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Introduction 
The use of pesticides in agricultural production is an 
indispensable method for controlling pests. 
However, the entry of these chemicals into aquatic 
ecosystems leads to serious environmental problems 
(Yıldırım, 2008). Neonicotinoids are particularly 
significant due to their systemic effects and 
environmental persistence; among them, 
imidacloprid is highly effective as it targets the 
nervous system of insects. Although it is primarily 
used to manage agricultural pests, it can also 

negatively impact non-target species (Tomizawa & 
Casida, 2005). The environmental half-life of 
imidacloprid in soil and water ranges between 40 
and 997 days, and when it reaches aquatic systems, 
it poses a considerable threat to fish and other 
aquatic organisms (Bonmatin et al., 2015). While 
Petković Didović et al. (2022) reported that 
imidacloprid tends to accumulate more in soil than 
leach into water, the risk of aquatic contamination 
remains a pressing environmental concern. 

 

Abstract: Imidacloprid is a widely used insecticide belonging to the neonicotinoid class, 
which acts on the central nervous system of insects. This study aimed to investigate the 
genotoxic effects of imidacloprid on Oreochromis niloticus using the micronucleus (MN) 
assay. For this purpose, fish were exposed to 50 and 100 mg/L concentrations of 
imidacloprid for 24 and 96 hours. Sublethal doses were selected as 1/6 and 1/3 of the 96-
hour LC50 value (280 mg/L). The frequencies of micronuclei and nuclear abnormalities 
(including notched, budding, lobed, and binucleated nuclei) were found to increase 
significantly in a dose- and time-dependent manner compared to the control groups 
(p<0.05). The highest MN frequency was observed in the 100 mg/L group at 96 hours, 
reaching a value of 10.8‰. Notched nuclei (11.5‰) and budding nuclei (9.5‰) also 
exhibited a significant increase. These findings indicate that imidacloprid can cause 
genotoxic effects even at low concentrations and may pose a substantial risk o aquatic 
ecosystem. The results emphasize the need for more rigorous biomonitoring of pesticide 
pollution and underscore the importance of implementing regulatory measures should 
be taken to protect aquatic environments. 
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Fish are exposed to pesticides through their gills, 
cutaneous absorption, and the food chain. This 
exposure can lead to a range of adverse effects, from 
genetic damage to physiological disorders 
(Atamanalp & Yanık, 2001; Helfrich et al., 2009). 
Oreochromis niloticus is widely used not only as a 
cultured fish species but also as a bioindicator 
organism due to its sensitivity to environmental 
pollutants (Dikel, 2009). Especially in agriculturally 
intensive regions such as Çukurova in Türkiye, this 
species is considered a suitable model for evaluating 
the site-specific impacts of pesticide pollution 
(Figueiredo-Fernandes et al., 2006). 

The micronucleus (MN) assay is widely 
recognized as a practical and reliable method for 
assessing genotoxicity (Fenech, 2000). Ansoar-
Rodríguez et al. (2015) reported that imidacloprid 
can induce DNA damage, while Guo et al. (2020) 
demonstrated its genotoxic effects even in human 
cell lines. Nugnes et al. (2023) emphasized 
genotoxicity in aquatic organisms related to the 
production of reactive oxygen species (ROS), 
highlighting a significant knowledge gap in this 
research area. 

This study aims to contribute novel insights into 
the effects of pesticide pollution in aquatic 
ecosystems by investigating the genotoxic effects of 
imidacloprid on O. niloticus through assessment of 
micronuclei and nuclear abnormalities. 

 
Materials and Methods 
Fish Material and Acclimatization 
Oreochromis niloticus specimens were obtained from 
the Freshwater Fish Application and Research 
Center of Çukurova University, Faculty of Fisheries. 
The fish measured 10–12 cm in length and weighed 
20–25 g. Prior to the experiment, individuals were 
acclimated for 15 days in 50 L aquaria. During the 
acclimatization, water temperature was maintained 
at 25 ± 1°C, pH at 7.2–7.5, and dissolved oxygen 
levels at 6–7 mg/L. Fifty percent of the water volume 
was renewed every 48 hours. Fish were fed twice 
daily with a commercial trout diet containing 35% 
crude protein. Feeding was suspended 48 prior to the 
start of the experiment. 

 
Experimental Design and Imidacloprid Exposure 
Lighting conditions were adjusted to a natural 
photoperiod of 15 hours light and 9 hours dark. 
Dechlorinated tap water was used in the aquaria, 
and water temperature was maintained at a constant 
22.8 °C throughout the experiment. Eight aquaria 
were used, each containing 12 fish, including two 
control groups (a negative control and a positive 
control treated with 5% EMS). Sublethal 
concentrations of 50 mg/L and 100 mg/L 
imidacloprid were selected, corresponding to 1/6 
and 1/3 of the 96-hour LC50 value (280 mg/L), 
respectively. Each treatment was conducted in 
triplicate. Physicochemical parameters of the water 
were monitored daily. To prevent fish from 
escaping, the tanks were covered with stretch film 
(Figure 1). 
 
Micronucleus Assay 
Blood samples were collected from the cardiac 
region of the fish. Peripheral blood smears were 
prepared on three separate slides per individual, air-
dried, and fixed in 95% ethanol for 20 minutes. After 
fixation, the slides were air-dried again and stained 
for 20 minutes with 5% Giemsa solution prepared in 
buffered water. The slides were examined under a 
Leica DM 500 jşgth microscope at 100× magnification 
(Maier & Schmid, 1976). A total of 1,000 erythrocytes 
per fish were scored per fish for the presence of 
micronuclei and nuclear abnormalities (including 
notched, budding, lobed, and binucleated nuclei). 

Statistical comparisons between groups were 
performed using Student’s t-test with SPSS version 
21. 
 
Results 
Throughout the experiment, no mortality was 
recorded in any of the aquaria, including both the 
control and treatment groups exposed to 50 mg/L 
and 100 mg/L imidacloprid (each tested in triplicate). 
The frequencies of micronuclei (MN) observed in 
erythrocytes of the exposed fish are summarized in 
Table 1. 
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Figure 1. Experimental setup 
 
Table 1. Micronucleus frequencies (‰) in Oreochromis niloticus following imidacloprid exposure 

Exposure Time Positive Control (EMS) Negative Control 50 mg/L 100 mg/L 
24 hours 7.03 2.38 7.07 9.15 
96 hours 6.96 2.96 9.34 10.84 

 
 

Both 50 mg/L and 100 mg/L concentrations of 
imidacloprid resulted in statistically significant 
increases in MN frequencies compared to the 
negative control group at both 24 and 96-hour 
exposure durations (p<0.05). The highest MN 
frequency was recorded in the 100 mg/L group at 96 
hours, reaching 10.84‰. 

The positive control group exposed to EMS also 
showed significantly elevated MN frequencies 
compared to the negative control at both exposure 
durations (p<0.05). 

Moreover, MN frequencies increased in a 
concentration- and time-dependent manner, with 
significantly higher values observed at higher 

concentration and longer exposure periods (p<0.05). 
Morphological nuclear abnormality analysis also 
revealed statistically significant increases in all 
treatment groups compared to the negative control 
(p<0.05). Nuclear abnormalities were observed in 
some individuals (as illustrated in Figure 2), and 
their frequencies are summarized in Table 2. 

Frequencies of budding nuclei were recorded as 
follows: 9.16‰ at 50 mg/L for 24 h; 9.38‰ at 96 h; 
9.08‰ at 100 mg/L for 24 h; and 9.53‰ at 96 h. 
Notched nuclei reached the highest frequency at 100 
mg/L and 24 h (11.46‰), with other notable 
frequencies observed at 50 mg/L and 24 h (8.48‰), 
and at 50 mg/L and 96 h (9.25‰). Lobed nuclei were 
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absent in the negative control group but were 
present in all treatment groups: 0.24‰ at 50 mg/L 
and 24 h; 0.14‰ at 96 h; 0.38‰ at 100 mg/L and 24 h; 

and 0.30‰ at 96 h. Binucleated cells were detected 
only in the 50 mg/L treatment groups, with a 
frequency of 0.05‰. 

 

 
Figure 2. Representative morphological abnormalities: a) Micronucleus, b) Notched nucleus, c) Budding nucleus, d) Lobed nucleus, e) 
Binucleated nucleus 
 
Table 2. Frequencies of nuclear abnormalities (‰) in Oreochromis niloticus following imidacloprid exposure 

Anomaly Type Exposure Time Negative Control 
Positive Control 
(EMS) 

50 
mg/L 

100 
mg/L 

Budding Nucleus 24 h 0.00 5.58 9.16 9.08 
 96 h 0.00 8.76 9.38 9.53 
Notched Nucleus 24 h 0.00 2.08 8.48 11.46 
 96 h 0.00 2.96 9.25 9.69 
Lobed Nucleus 24 h 0.00 0.88 0.24 0.38 
 96 h 0.00 1.08 0.14 0.30 
Binucleated Cell 24 h 0.00 0.00 0.05 0.00 
 96 h 0.00 0.00 0.05 0.00 

 
 
Discussion 
The findings of this study clearly demonstrate that 
imidacloprid induces genotoxic effects in O. niloticus, 
as evidenced by the statistically significant increases 
in micronucleus (MN) frequencies (p<0.05). The 
maximum MN frequency observed in this study 

(10.84‰) is consistent with previous research 
findings. For instance, Ansoar-Rodríguez et al. 
(2015) reported significant increases in MN 
frequencies after exposing O. niloticus to 62.5, 125, 
and 250 µg/L concentrations of imidacloprid for 96 
hours. Similarly, Çavaş and Könen (2008) found that 
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the herbicides. Trifluralin and Treflan significantly 
increased MN formation in O. niloticus after 
exposures of 3-, 6-, and 9-day at 1.5 and 10 µg/L. In 
the present study, imidacloprid was found to induce 
even higher MN frequencies than EMS, the positive 
control. Guo et al. (2020) also reported similar 
genotoxic effects of imidacloprid in human cell lines, 
further suggesting its broad genotoxic potential. 

The observed nuclear abnormalities provide 
additional insights into the genotoxic effects of 
imidacloprid. The frequency of notched nuclei 
reached 11.46‰ in fish exposed to 50 mg/L of 
imidacloprid for 24 hours, suggesting nuclear 
envelope instability. The slight reduction to 9.69‰ at 
96 hours may indicate a cellular adaptation response 
over time. The persistent occurrence of budding 
nuclei points to a potential suppression of DNA 
repair mechanisms (Shimizu et al., 2000). Although 
lobed and binucleated nuclei were less frequentlt 
observed, their occurrence supports the presence of 
genotoxic stress. 

The genotoxic effect of imidacloprid may be 
attributed to the increased production of reactive 
oxygen species (ROS) through oxidative stress 
mechanisms (Nugnes et al., 2023). Mondal et al. 
(2024) reported that pesticide exposure in fish 
suppresses antioxidant enzyme activities, which 
could contribute to underlie the elevated frequencies 
of MN and nuclear abnormality observed in the 
present study. The detection of these effects at 
sublethal concentrations indicates that even low 
levels of imidacloprid are capable of inducing 
cellular damage. 

From an ecological perspective, the accumulation 
of imidacloprid in aquatic environments raises 
significant concern. Goulson (2013) and Morrissey et 
al. (2015) highlighted the potential indirect effects of 
neonicotinoids on fish populations, while 
Yamamuro et al. (2019) reported disruptions in 
aquatic food webs, suggesting broader ecological 
consequences. Suzuki et al. (2024) demonstrated 
imidacloprid-induced toxicity in zooplankton, 
indicating trophic-level risks that may propagate 
through the ecosystem. Merga and Van den Brink 
(2021) further emphasized the heightened 

vulnerability of tropical aquatic ecosystems to 
pesticide exposure. In addition, several studies have 
noted that imidacloprid-induced genetic damage in 
O. niloticus may impair reproduction capacity and 
compromise overall population health (Depledge, 
1998; De Figueirêdo et al., 2024). 

In Türkiye, intensive and widespread agricultural 
activity have resulted in the extensive use of various 
pesticide, thereby increasing the risk of aquatic 
ecosystem contamination. This highlights the 
importance of biological monitoring of pesticide 
pollution (Tiryaki, 2016). Sánchez-Bayo and 
Tennekes (2020) emphasized the time-cumulative 
toxicity of imidacloprid, which aligns with the 96-
hour exposure findings observed in the present 
study. Chará-Serna et al. (2021) also demonstrated 
that environmental factors, such as sediment 
composition, can influence the toxicity and 
persistence of neonicotinoids. Furthermore, the 
impact of imidacloprid has been documented in non-
aquatic organisms, including bees (Karahan, 2015) 
and amphibians (Akbaş, 2014), indicating its broad 
ecological toxicity. Its greater genotoxicity potential 
compared to organophosphates underscores the 
need for further investigation into its mechanisms of 
action long-term ecological consequences 
(Bolognesi, 2003). 
 
Conclusion and Recommendations 
This study demonstrated that exposure to 
imidacloprid significantly increases the frequency of 
micronuclei (MN) and nuclear abnormalities in the 
erythrocytes of O. niloticus, in a concentration- and 
time-dependent manner. These findings provide 
clear evidence of the genotoxic potential of this 
pesticide in fish. 

It is recommended that future studies build upon 
these findings by incorporating histopathological 
evaluations and biochemical stress markers to 
provide a more comprehensive understanding of 
imidacloprid’s toxicological effects. Additionally, 
further research should examine the impacts of 
commonly used pesticides on a broader range fish 
species and other aquatic organisms of ecological 
and nutritional importance. 
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