The role of free proline and soluble carbonhydrates in serpentine stress on some serpetinophyte and serpentinovag plants

Beste Gizem ÖZBEY, Ebru ÖZDENIZ, Aysenur BOLUKBAŞI, Mert ÖKTEM, Yuksel KELEŞ, Latif KURT


The aim of this study is to exhibit the roles of free proline and soluble carbonhydrates in serpentine stress. For this purpose, contents of free proline and soluble carbonhydrate were analyzed in serpentinophytes (Paronychia angorensis Chaudri) and serpentinovags [both serpentine and non-serpentine Alyssum sibiricum Willd., Centaurea urvillei DC. subsp. stepposa Wagenitz, Salvia absconditiflora (Montbret & Aucher ex Bentham) Greuter & Burdet)]. While free proline content is low in serpentinophytes, soluble carbonhydrate ratio is high (Ch/Pr; 8.5). Free proline in the individuals of serpentinovags growing on serpentine soils is proportionally low, but soluble carbonhydrate ratio is high (Ch/Pr; 2.73, 2.57, 4.83). Soluble carbonhydrate ratio in the individuals of serpentinovags growing on non-serpentine soils increases (Ch/Pr: 7.95, 2.60, 1.96, 13.5) while free proline decreases. Although proline content is higher in some species growing on serpentine soils in comparison to those plants not under stress conditions this is not a general case. It is however observed that soluble carbonhydrate content in serpentine plants is commonly high.


Serpentine stress, Serpentinophyte, Serpentinovag, Soluble carbonhydrate.

Full Text:



Abdula S.E., Lee H.J., Ryu H., Kang K.K., Nou I., Sorrells M.E., Cho Y.G. 2016. Overexpression of BrCIPK1 gene enhances abiotic stress tolerance by ıncreasing proline biosynthesis in rice. Plant Molecular Biology Reporter, 34: 501-511.

Akman Y. 2010. İklim ve Biyoiklim. Palme Yayıncılık. 345 s. Ankara.

Anacker B.L. 2011. Phylogenetic patterns of endemism and diversity. In: S.P. Harrison, N. Rajakuruna (Eds.). Serpentine: The evolution and ecology of a model system, University of California Press. Berkeley, California, USA. pp: 49-70.

Anacker B.L. 2014. The nature of serpentine endemism. American Journal of Botany, 101: 219-224.

Avci M. 2005. Diversity and endemism in Turkey’s vegetation. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 13: 27-55.

Bates L.S., Walderen R.D., Taere I.D. 1973. Rapid determination of free proline for water stress studies. Plant Soil, 39: 205-207.

Brady K.U., Kruckeberg A.R., Bradshaw H.D. Jr. 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics, 36: 243-266.

Brown J.H. 1995. Macroecology. Chicago, USA: University of Chicago Press.

Bündig C., Vu T.H., Meise P., Seddig S., Schum A., Winkelmann T. 2016. Variability in osmotic stress tolerance of starch potato genotypes (Solanum tuberosum L.) as revealed by an in vitro screening: role of proline, osmotic adjustment and drought response in pot trials. Journal Crop Science Agronomy, doi:10.1111/jac.12186.

Choi D.G., Hwang J.S., Choi S.C., Lim S.H., Kim J.G., Choo Y.S. 2016. The effect on photosynthesis and osmotic regulation in Beta vulgaris L. var. flavescens DC. by salt stress. Journal of Ecology and Environment, 39: 81-90.

Crawford D.J., Doyle J.J., Soltis D.E., Soltis P.S., Wendel J.F. 2014. Contemporary and future studies in plant speciation, morphological/floral evolution and polyploidy: honouring the scientific contributions of Leslie D. Gottlieb to plant evolutionary biology. Phil. Trans. R. Soc. DOI: 10.1098/rstb.2013.0341.

Futuyma D.J., Moreno G. 1988. The evolution of ecological specialization. Annual Reviews of Ecology Systematics, 19: 207–233.

Gaston K.J., Blackburn T.M. 2000. Pattern and Process in Macroecology. Blackwell Science, Oxford.

Halhoul M.N., Kleinberg I. 1972. Differential determination of glucose and fructose yielding substances with anthrone, Analytical Biochemistry, 50: 337-343.

Iturralde R.B. 2001. The influence of ultramafic soils on plants in Cuba. South African Journal of Science, 97: 510- 512.

Kurt L., Ozbey B.G., Kurt F., Ozdeniz E., Bolukbası A. 2013. Serpentine flora of Turkey. Biological Diversity and Conservation, 6: 134-152.

Oncel I., Yurdakulol E., Keles Y., Kurt L., Yıldız A. 2004. Role of oxidative defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Acta Oecologica, 26: 211-218.

Sami F., Yusuf M., Faizan M., Faraz A., Hayat S. 2016. Role of sugars under abiotic stress. Plant Physiology and Biochemistry, 109: 54-61.

Signorelli S. 2016. The fermentation analogy: a point of view for understanding the ıntriguing role of proline accumulation in stressed plants. Frontiers in Plant Science, 7: 13-39.

Stevens G.C. 1989. The latitudinal gradient in geographial range: how so many species coexist in the tropics. The American Naturalist, 133: 240-256.


  • There are currently no refbacks.