Effects of force-fed boric acid on the life history traits of greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae)

Rehemah GWOKYAYLA, Hülya ALTUNTAŞ

Abstract

Pest biological fitness and normal development are important factors for pest population sustainability. In this study, the sub-lethal, lethal and sub-acute effects of boric acid on the life history traits of the greater wax moth Galleria mellonella were investigated. Boric acid concentrations (LC30, LC50 and, LC70) were administered to 5th instar G. mellonella larvae via force-feeding method. The individuals in both experimental and control groups were observed daily and the larval and pupal developmental times, adult longevity as well as pupal and adult weights were recorded. Results showed that treating G. mellonella with boric acid significantly decreased pupal and adult weights in a concentration dependent manner when compared to the control. Additionally, while larval developmental time increased post boric acid treatment, it was observed that pupal developmental time and adult longevity significantly shortened when compared to the control. Moreover, at the two highest boric acid concentrations, pupal developmental time and adult longevity decreased by almost 50% when compared to the control. With these findings, we infer that boric acid significantly affects the normal development of pest insect G. mellonella and thus affects it biological fitness and survivability.

Keywords

Boric acid; force-feeding; Galleria mellonella; life-history traits; model insect

Full Text:

PDF

References

Altuntaş H., Kılıç A.Y., Uçkan F., and Ergin E. 2012. Effects of gibberellic acid on hemocytes of Galleria mellonella L. (Lepidoptera: Pyralidae). Environmental Entomology, 41: 688-96.

Atkins E.L. 1987. Laboratory Bee Adult Toxicity Tests (BATDT) for boric acid, powdered, 100% technical. MRID 40269201.

Avino-Martinez J.A., España-Gregori E., Peris-Martinez C.P., Blanes M., 2008. Successful boric acid treatment of Aspergillus niger infection in an exenterated orbit. Ophthalmic Plastic and Reconstructive Surgery, 24: 79–81.

Brevik K., Lindström L., Mckay S. D. Chen Y. H. 2018. Transgenerational effects of insecticides-implications for rapid pest evolution in agroecosystems, Current Opinion in Insect Science.

Büyükgüzel E. Büyükgüzel K., Snela M., Erdem M., Radtke K., Ziemnicki K., and Adamski Z. 2013. Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella. Cell Biology and Toxicology, 29: 117–129.

Casida J. E., Durkin K. A. 2013. Neuroactive insecticides: Targets, selectivity, resistance, and secondary effects. Annual Review of Entomology, 58: 99-117.

Cochran D.G. 1995. Toxic effects of boric acid on the German cockroach. Cellular and Molecular Life Sciences, 51: 561-563. https://doi:10.1007/BF02128743.

Cornwell P. B. 1976. The Cockroach, vol. II. St. Martins Press, New York.

Cruz D. A., Zacarin E.C.M., Bueno O.C., Malaspina O. 2010. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae. Cell Biology and Toxicology, 26 (2): 165-176.

Çalık G., Büyükgüzel K., Büyükgüzel E. 2016. Reduced fitness in adults from Larval, Galleria mellonella (Lepidoptera: Pyralidae) reared on media amended with the antihelmintic, mebendazole. Journal of Economic Entomology, 109(1): 182-187.

Çelik C., Büyükgüzel K., Büyükgüzel E. 2019. The effects of oxyclozanide on survival, development and total protein of Galleria mellonella L. (Lepidoptera: Pyralidae). Journal of the Entomological Research Society, 21(1): 95-108.

Davidowitz G., D’Amico L.J., Nijhout H.F. 2003. Critical weight in the development of insect body size. Evolution & development, 5: 2, 188-197.

Deber C.M., Behnam B.A. 1984. Role of membrane lipids in peptide hormone function: binding of enkephalins to micelles. Proceedings of the National Academy of Sciences of the United States of America, 81 (1): 61-65.

Dere B., Altuntaş H., Nurullahoğlu, Z. U. 2015. Insecticidal and oxidative effects of azadirachtin on the model organism Galleria mellonella L. (Lepidoptera: Pyralidae). Archives of Insect Biochemistry and Physiology, 89: 138-152.

https://doi:10.1002/arch.21231.

Dere B., Nurullahoğlu Z.U., Altuntaş H. 2019. Effects of azadirachtin on development of model insect Galleria mellonella l. (Lepidoptera: pyralidae). Eskişehir Technical University Journal of Science and Technology C- Life Sciences and Biotechnology, 8(1): 85-91.

Ebeling W. 1995. Inorganic insecticides and dusts, pp. 193-230. In M. K. Rust, J. M. Owens, and D. A. Reierson [eds.], Understanding and controlling the German cockroach. Oxford University Press. New York.

Er A., Taşkıran D. Sak O. 2017. Azadirachtin-induced effects on various life history traits and cellular immune reactions of Galleria mellonella (Lepidoptera: Pyralidae).Archives of Biological Sciences, 69(2): 335-344.

Fail P. A., Chapin R. E., Price C. J., Heindel J. J. 1998. General, reproductive, developmental, and endocrine toxicity of boronated compounds. Reproductive Toxicology, 12: 1-18.

Farid A., Zaman M., Saeed M., Khan M., Bad shah T. 2015. Evaluation of boric acid as a slow-acting toxicant against subterranean termites (Heterotermes and Odontotermes). Journal of Entomology and Zoology Studies, 3: 213-216.

Gupta. S., Dikshit. A. K. 2010. Biopesticides: An ecofriendly approach for pest control. Journal of Biopesticides, 3(1): 186-188.

Gwokyalya R., Altuntaş H. 2019. Boric acid-induced immunotoxicity and genotoxicity in model insect Galleria mellonella L. (Lepidoptera: Pyralidae). Archives of insect biochemistry and physiology. doi: 10.1002/arch.21588.

Habes D., Morakchi S., Aribi N., Farine J.P., Soltani N. 2006. Boric acid toxicity to the German cockroach, Blattella germanica: alterations in midgut structure, and acethylcholinesterase and glutathione Stransferase activity. Pesticide Biochemistry and Physiology, 84: 17-24. https://doi:10.1016/j.pestbp.2005.05.002.

Harper B., Gervais J.A., Buhl K., Stone D. 2012. Boric Acid Technical Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services.

Harrouk W.A., Wheeler K.E., Kimmel G.L., Hogan K.A., Kimmel C.A., 2005. Effects of Hyperthermia and Boric Acid on Skeletal Development in Rat Embryos. Birth Defects Research. Part B, Developmental and Reproductive Toxicology, 74(3): 268-76.

Heindel J.J., Price C.J., Schwetz B.A. 1994. The developmental toxicity of boric acid in mice, rats, and rabbits. Environmental Health Perspectives, 102(7): 107-112. doi: 10.1289/ehp.94102s7107.

Hyršl P., Büyükgüzel E., Büyükgüzel K. 2007. The effects of boric acid-induced oxidative stress on antioxidant enzymes and survivorship in Galleria mellonella. Archives of Insect Biochemistry and Physiology, 66: 23-31.

Hyršl P., Büyükgüzel E., Büyükgüzel K. 2008. Boric acid-induced effects on protein profiles of Galleria mellonella hemolymph and fat body. Acta Biologica Hungarica, 59: 281-288.

Jeschke P., Nauen R., Schindler M., Elbert A. 2010. Overview of the status and global strategy for neonicotinoids. Journal of Agricultural and Food Chemistry, 59(7): 2897-2908.

Jorjăo A.L., Oliveiraa L.D., Scorzonia L., Figueiredo-Godoia L.M.A., Pratab M.C.A., Jorgea A.O.C., Junqueiraa, J.C. 2018. From moths to caterpillars: Ideal conditions for Galleria mellonella rearing for in vivo microbiological studies. Virulence, 9(1): 383-389. https://doi.org/10.1080/21505594.2017.1397871.

Kavanagh K., Reeves P. E. 2007. Insects and mammalian innate immune responses are much alike. Microbe, 2: 596–599.

Kilani-Morakchi S., Aribi N., Farine J.P., Everaerts, C., Soltani, N. 2005. Effets de l’acide borique sur les profiles d’hydrocarbures cuticulaires chez un insecte à intérêt médical, Blattella germanica (Dictyoptera: Blattellidae). Journal de la Société Algérienne de Chimie, 15: 225-231.

Kilani-Morakchi S., Aribi N., Soltani N. 2009. Activity of boric acid on German cockroaches: Analysis of residues and effects on reproduction. African Journal of Biotechnology, 8 (4): 703-708.

Kim K.D., Li S.G., Kang, Y.J., Kim K.W., Son M.H. 2012. Effects of Dietary Protein and Lipid Levels on Growth and Body Composition of Juvenile Far Eastern Catfish Silurus asotus. Asian-Australas Journal of Animal Sciences, 25(3): 369-374.

Klatt B. K., Rundlöf M., Smith H. G. 2016. Maintaining the restriction on neonicotinoids in the European Union–benefits and risks to bees and pollination services. Frontiers in Ecology and Evolution, 4: 4.

McCarthy M.F. 1994. Promotion of hepatic lipid oxidation and glucogenesis as a strategy for appetite control. Medical Hypotheses, 42(4): 215-225.

Miles T. G. 1994. Use of disodium octaborate tetrahydrate to protect aspen waferboard from termites. Forest Products Journal, 44(9): 33-36.

Mohamed A.A., Ansari M.J., AL-Ghamdi A., Mohamed M.O., Kaur M. 2014. Effect of larval nutrition on the development and mortality of Galleria mellonella (Lepidoptera: Pyralidae). Revista Colombiana de Entomología, 40 (1): 49-54.

Price C.J., Strong P.L., Marr C.B., Myers C.B., Murray F.J. 1996. Developmental toxicity NOAEL and postnatal recovery in rats fed boric acid during gestation. Fundamental and Applied Toxicology, 32: 179-193.

Ramarao N., Nielsen-Leroux C., Lereclus D. 2012. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. Journal of Visualised Experiments, 11:e4392. https://doi:10.3791/4392.

Schopf A. 1991. The Effect of Host Age of Lymantria dispar Larvae (Lep: Lymantriidae) on the Development of Glyptapanteles liparidis (Hym: Braconidae). Entomophaga, 36: 4, 593-604.

Senthil-Nathan S. 2013. Physiological and biochemical effect of neem and other meliaceae plants secondary metabolites against lepidopteran insects. Frontiers in Physiology, 4: 1-17.

Sugeçti S., Büyükgüzel K., Büyükgüzel E. 2016. Laboratory assays of the effects of oxfendazole on biological parameters of Galleria mellonella (Lepidoptera: Pyralidae). Journal of Entomological Science, 51(2): 129-137.

U.S. EPA (U.S. Environmental Protection Agency). 1993. RED on boric acid and sodium Salts. Available at: http://cfpub.epa.gov/oppref/rereg/status.cfm?Show=rereg.

U.S. EPA. 1996). EPA exposure factors Handbook. Available at http://www.epa.gov/ordntrnt/ORD/WebPubs/exposure/.

USDA report. 2006. Human Health and Ecological Risk Assessment for Borax (Sporax)®. Final report. Forest Health Protection USDA Forest Service.

Van der Horst D.J., Vroemen S.F., Van Marrewijk W.J.A. 1997. Metabolism of stored reserves in insect fat body: hormonal signal transduction implicated in glycogen mobilization and biosynthesis of the lipophorin System. Comparative Biochemistry and Physiology, 117(4): 463-474.

Weir RJ., Fisher RS. 1972. Toxicologic studies on borax and boric acid. Toxicology and Applied Pharmacology, 23: 351-364. https://doi:10.1016/0041-008X(72)90037-3.

Wojda I. 2017. Immunity of the greater wax moth Galleria mellonella. Insect Science, 24: 342–357. https://doi:10.1111/1744-7917.12325.

Xue R.D., Bernard D.R. 2003. Boric acid bait kills adult mosquitoes (Diptera: Culicidae) Journal of Economic Entomology, 96: 1559-1562.

Zorlu T., Nurullahoğlu Z.U., Altuntaş H. 2018. Influence of dietary titanium dioxide nanoparticles on the biology and antioxidant system of model insect, Galleria mellonella (L.) (Lepidoptera: Pyralidae). Journal of the Entomological Research Society, 20(3): 89-103.

Refbacks

  • There are currently no refbacks.