Role of lichen secondary metabolities and pigments UV-screening phenomenon in lichens

Gülşah ÖZYİĞİTOĞLU, Ahmed Ali AL-AMOODY, Damla YAYMAN, Tuğçe KAAN, Elif Aysu ÖZKÖK, Ahmet ÖZCAN, Ezgi ÖZEN

Abstract

There are various protection mechanisms developed by living beings in response to the environmental stress conditions they encounter in their natural habitats. Many animals, plants, lichens and fungi have developed a function called screening to protect themselves against harmful rays from the sun. They reflect some of the ultraviolet rays (UV radiation) they absorb with their biofluorescence feature in different wavelength colors. In this review article, "UV-screening" by lichens spreading in terrestrial ecosystems and their symbionts (green alga, cyanobacteria and lichenized fungi) to protect themselves against adverse effects of ultraviolet radiation has been discussed based on numerous articles reviewed in the literature. It is known that lichens-specific secondary metabolites play an active role in this UV-screening event by absorbing and again reflecting light. The current information about the mechanism of UV-screening, changes depending on the lichen species and environmental conditions, and also possible protective functions of unique aromatic compounds (lichen secondary metabolites) and pigments produced by lichens, roles in UV-screening phenomenon has been presented in detail. In addition, methods used to observe damage caused by UV effect and screening in lichens are briefly mentioned, examples of some lichen species with screening are also included.

Keywords

lichen, secondary metabolites, UV screening, pigment.

Full Text:

PDF

References

Boluda C.G., Rico V.J., Hawksworth D.L. 2014. Fluorescence microscopy as a tool for the visualization of lichen substances within Bryoria thalli. The Lichenologist, 46(5): 723–726. doi:10.1017/S0024282914000292.

Buffoni Hall R.S., Bornman J.F., Bjorn L.O. 2002. UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. Journal of Photochemistry and Photobiology, 66: 13-20. doi:https://doi.org/10.1016/S1011-1344(01)00270-6

Buffoni Hall R.S. 2002. Effects of increased UV-B radiation on the lichen Cladonia arbuscula spp. mitis: UV absorbing pigments and DNA damage. Department of Cell and Organism Biology, ISBN 91-628-5362-7.

Caldwell M.M., Robberecht R., Flint S.D. 1983. Internal filters: prospects for UV-acclimation in higher plants. Physiol Plants, 445-450. doi: https://doi.org/10.1111/j.1399-3054.1983.tb04206.x

Cockell C.S., Knowland J. 1999. Ultraviolet radiation screening compounds. Cambridge University Press, 74(3): 311-345. doi: https://doi.org/10.1017/S0006323199005356.

Chowdhury D.P., Solhaug K.A., Gauslaa Y. 2016. Ultraviolet radiation reduces lichen growth rates . Symbiosis, 27-34. doi: 10.1007/s13199-016-0468-x.

Deda G., Atmaca L.S. 2002. Ultraviyole ve Göz. Journal of Retina, 10: 196-201.

Deduke C., Timsina B., Piercey-Normore M.D. 2012. Effect of Environmental Change on Secondary Metabolite Production In Lichen Forming Fungi. In: Young S., (Ed.) International Perspectives on Global Environmental Change. InTech, pp: 197-230.

Ekici Ö.K. 2012. Biyolüminesans: Işıldayan Canlılar, Biyolojik Işıldama. TÜBİTAK Bilim ve Teknik Dergisi, Ağustos,36-45. (In Turkish)

Gauslaa Y., Ustvedt E.M. 2003. Is parietin a UV-B or a blue light screening pigment in lichens Xanthoria parietina?. Photochem Photobiol Sci, 2: 424-432.

Goga M., Elecko J., Marcincinova M., Rucova D., Backorova M., Backor M. 2018. Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. In: J.-M. Mérillon, K. G. Ramawat (eds.), Co-Evolution of Secondary Metabolites, Springer Nature, Switzerland, pp: 1-36. doi: https://doi.org/10.1007/978-3-319-76887-8_57-1

Huneck S. 1999. The Significance of Lichens and Their Metabolites. Die Naturwissenschaften, 86: 559-570.

Huneck S. 2001. New results on the chemistry of lichen substances. In: W. Herz, H. Falk, G.W. Kirby, R.E. Moore (Eds.), Progress in the Chemistry of Organic Products. Springer, New York. pp: 1-276.

Jeng M.L. 2019. Biofluorescence in Terrestrial Animals, with Emphasis on Fireflies: A Review and Field Observation. Intech Open. Pp: 1-25. doi: http://dx.doi.org/10.5772/intechopen.86029.

Johnson J.C., Bennett J.P., Biro M.S., Duque-Velasquez C.J., Rodriguez M.C., Bessen A.R., Rocke E.T. 2011. Degradation of the Disease-Associated Prion Protein by a Serine Protease from Lichens. PLoS ONE 6(5): e19836. doi:10.1371/journal.pone.0019836

Karakoti N., Bajpai R.,Upreti D. K., Mishra G. K., Srivastava A., Nayaka S. 2014. Effect of metal content on chlorophyll fluorescence and chlorophyll degradation in lichen Pyxine cocoes (Sw.) Nyl.: a case study from Uttar Pradesh, India. Environmental Earth Sciences, 71: 2177–2183.

Kauppi M. 1980. Fluorescence microscopy and microfluorometry for the examination of pollution damage in lichens. Annales Botanici Fennici, 17(2): 163-173.

Kauppi M., Verseghy-Patay K. 1990. Determination of the distribution of lichen substances in the thallus by fluorescence microscopy. Annales Botanici Fennici, 27(2): 189-202.

Kenar N., Ketenoğlu O. (2009). Güneş Kaynaklı Ultraviyole Radyasyonunun Karasal Ekosistemler Üzerine Etkileri. S Ü Fen Fak. Fen Derg, 33: 67-77. (In Turkish)

Lawrey D.J. 1986. Biological Role of Lichen Substances. The Bryologist, 89(2): 111-122.

Li C., Liu S., Zhang W., Chen K., Zhang P. 2019. Transcriptional profiling and physiological analysis reveal the critical roles of ROS-scavenging system in the Antarctic moss Pohlia nutans under Ultraviolet-B radiation. Plant Physiology and Biochemistry, 134: 1-10.

Lucking R., Dal-Forno M., Moncada B., Chaves J.L., Lawrey J.D. 2014. The Enchanted Jungle. Fungi, 7: 2-3.

Mackerness S.A.H. 2000. Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: What are the key regulators? Plant Growth Regulation, 32: 27-39.

Mafole T.C., Chiang C., Solhaug K.A., Beckett R.P. 2017. Melanisation in the old forest lichen Lobaria pulmonaria reduces the efficiency of photosynthesis. Fungal Ecology, 29: 103-110.

Mafole C.T.,Solhaug A.K., Minibayeva V.F., Beckett P.R. 2019. Occurrence And Possible Roles Of Melanic Pigments İn Lichenized Ascomycetes. Fungal Biology Reviews, 33: 159-165.

Manojlovic T. N., Vasiljevic J. P., Maskovic Z. P., Juskovic M., Bogdanovic-Dusanovic G. 2012. Chemical Composition, Antioxidant, and Antimicrobial Activities of Lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae). Evidence-Based Complementary and Alternative Medicine, 1-8. doi:10.1155/2012/452431

Molnar K., Farkas E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift für Naturforschung, 65c: 157-173.

Müller K. 2001. Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol, 56: 9-16.

Nash III TH. 2008. Lichen Biology. 2nd ed., Cambridge University Press, Cambridge. 486 p.

Nguyen, K.H., Chollet-Krugler M., Gouault N., Tomasi S. (2013). UV-protectant metabolites from lichens and their symbiotic partners . The Royal Society of Chemistry, 30: 1490-1508.

Nybakken L., Solhaug K.A., Bilger W., Gauslaa Y. (2004). The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologica, 140: 211-216.

Özyiğitoğlu G., Açıkgöz B., Sesal C. 2016. Lichen secondary metabolites synthesis pathways and biological activities, Acta Biologica Turcica 29(4): 150-163. (In Turkish)

Paukov A., Teptina A., Morozova M., Kruglova E., Favero-Longo S.E., Bishop C., Rajakaruna N. 2019. The Effects of Edaphic and Climatic Factors on Secondary Lichen Chemistry: A Case Study Using Saxicolous Lichens. Diversity, 11(94): 1-18. doi:10.3390/d11060094.

Phinney N.H., Gauslaa Y., Solhaug K.A. 2018. Why chartreuse the pigment vulpinic acid screens blue light in the lichen Letharia vulpina. Planta, 249(3): 709-718.

Rancan F., Rosan S., Boehm K., Fernandez E., Hidalgo E.M. 2002. Protection against UVB irradiation by natural filters extracted from lichens. Journal of Photochemistry and Photobiology, 68: 133-139.

Riley P.A. 1997. Molecules in focus: Melanin. Int J Biochem Cell Biol., 29: 1235–1239.

Romagni J.G., Dayan F.E. 2002. Structural diversity of lichen metabolites and their potential use. In: R.J. Upadhyay (Ed.), Advances in Microbial Toxin Research and Its Biotechnological Exploitation. Kluwer Academic / Plenum Publishers, New York, pp: 151-169.

Ronen R., Galun M. 1984. Pigment Extraction From Lichens With Dimethly, Sulfoxide (DMSO) And Estimation Of Chlorophyll Degradation. Environmental and Experimental Botany, 24(3): 239-245.

Shukla V., Joshi G.P., Rawat M.S.M. 2010. Lichens as a potential natural source of bioactive compounds: a review. Springer, Phytochemistry Reviews, 9: 303-314.

Singh J., Singh R.P. 2014. Adverse Effects of UV-B Radiation on Plants Growing at Schirmacher Oasis, East Antarctica. Toxicol. Int., 21: 101-106.

Singh J., Dubey K.A., Singh P.R. 2011. Antarctic Terrestrial Ecosystem and Role of Pigments in Enhanced UV-B Radiations. Rev. Environ. Sci. Biotechnol, 10: 63-77.

Solhaug K.A., Gauslaa Y., Nybakken L., Bilger W. 2003. UV-induction of sun-screening pigments in lichens . New Phytologist, 158: 91-100. doi: 10.1046/j.1469-8137.2003.00708.x.

Stocker-Wörgötter E. 2008. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimatemetabolite production, and PKS genes. Nat. Prod. Rep, 25: 188-200. doi: 10.1039/B606983P

Uddin M. 2019. Environmental Factors on Secondary Metabolism of Medicinal Plants. Acta Scientific Pharmaceutical Sciences 3(8): 34-46.

Ünal D., Uyanıkgil Y. 2009. UV-B induces cell death in the lichen Physcia semipinnata (J.F.Gmel). Turk J Biol, 35: 137-144. (In Turkish)

Vaczi P., Gauslaa Y., Solhaug K.A. 2018. Efficient fungal UV-screening provides a remarkably high UV-B tolerance of photosystem II in lichen photobionts. Plant physiology and biochemistry, 132: 89-94.

Váczia P., Gauslaab Y, Solhaugb K.A. 2019. Reprint of Efficient fungal UV-screening provides a remarkably high UV-B tolerance of photosystem II in lichen photobionts. Plant physiology and biochemistry, 134: 123-128.

Wiedmann N.D., Sadowsky A., Convey P., Ott S. 2019. Physiological life history strategies of photobionts of lichen species from Antarctic and moderate European habitats in response to stressful conditions. Polar Biology, (42): 395–405. https://doi.org/10.1007/s00300-018-2430-2.

Yamamoto Y., Miura Y., Higuchi M., Kinoshita Y. 1993. Using Lichen Tissue Cultures in Modem Biology. The Bryologist, 96(3): 384-393.

Yoshimura I. 1994. Lichen substances in cultured lichens. J. Hattori Bot. Lab., 76: 249-261.

Zhang H. 2006. p53 plays a central role in UVA and UVB induced cell damage and apoptosis in melanoma cells. Cancer Lett., 244: 229-238.

Refbacks

  • There are currently no refbacks.