Silk protein fibroin and its applications in health



Silk fibers are made by silkworms and spiders, produced in the form of non-woven fiber with protein structure. The silk obtained from the Bombyx mori silkworm, which is the most widely used, has many different and attractive features that have been won recognition for 5,000 years. When the raw silk fiber is examined, the fibroin layer is seen on the inside of the fiber and the layer of sericin covering the fiber on the outer part. 72-81% of the raw silk fiber is fibroin and the remaining 19-28% is sericin. The sericin layer, covering the perfect brightness of the fibroin part of the silk, gives the silk fiber a yellowish color and stiffness. Silk fibroin has been the subject of biotechnological and biomedical studies with its elastic, strong, biocompatible, biodegradable and thermally stable properties. The fact that silk is easily available in fiber forms from cocoons is the preferred reason for silk fibroin; It can be obtained in different forms such as gel, powder or membrane and thus varies in application areas. Its dense or porous structure, controllable solubility and oxygen permeability, the diversity of the usage area and the availability of the material have enabled the use of silk in many different sectors except the textile sector, which is the traditional application area. In this review, structure of silk protein fibroin from Bombyx mori and its usage in health were compiled.


Bombyx mori; Silk Protein; Fibroin; Silk Fiber

Full Text:



Altun, D. (2007). XIX. Yuzyilda Bursa’da ipek böcekçiliği. Balikesir Universitesi, Fen Edebiyat Fakultesi Tarih Kulubu Bulteni, 1, 102-108.

Atav, R. (2011). İpek liflerinin dünü ve bugünü. Mühendislik Bilimleri ve Tasarım Dergisi, 1(3), 112-119.

Bayçın, D., Altıok, E., Ülkü, S., & Bayraktar, O. (2007). Adsorption of olive leaf (Olea europaea L.) antioxidants on silk fibroin. Journal of agricultural and food chemistry, 55(4), 1227-1236.

Coşkun, G., Karaca, E., Hockenberger, A., & Ömeroğlu, S. (2016). İpek Ameliyat İplikleri ve Türkiye’de Üretim Olanakları. Tekstil ve Mühendis, 23(102), 140-152.

Gobin, A. S., Rhea, R., Newman, R. A., & Mathur, A. B. (2006). Silk-fibroin-coated liposomes for long-term and targeted drug delivery. International journal of nanomedicine, 1(1), 81.

Huang, W., Rollett, A., & Kaplan, D. L. (2015). Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert opinion on drug delivery, 12(5), 779-791.

Huang, W., Ling, S., Li, C., Omenetto, F. G., & Kaplan, D. L. (2018). Silkworm silk-based materials and devices generated using bio-nanotechnology. Chemical Society Reviews, 47(17), 6486-6504.

İzzetoğlu, T. (2009). İpekböceği (Bombycidae: Bombyx mori)’nde juvenil ve ekdizon hormonları uygulaması sonucu olası değişimler. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 15(4).

Kanczler, J. M., Ginty, P. J., White, L., Clarke, N. M., Howdle, S. M., Shakesheff, K. M., & Oreffo, R. O. (2010). The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials, 31(6), 1242-1250.

Kang, M. L., & Im, G. I. (2014). Drug delivery systems for intra-articular treatment of osteoarthritis. Expert opinion on drug delivery, 11(2), 269-282.

Kang, Y. K., Lee, B. Y., Bucci, L. R., & Stohs, S. J. (2018). Effect of a fibroin enzymatic hydrolysate on memory ımprovement: A placebo-controlled, double-blind study. Nutrients, 10(2), 233.

Kato, M., Isobe, K. I., Dai, Y., Liu, W., Takahashi, M., & Nakashima, I. (2000). Further characterization of the Sho-saio-to-mediated anti-tumor effect on melanoma developed in RET-transgenic mice. The Journal of investigative dermatology, 114(3), 599-601.

Kim, D. H., Kim, O. H., Yeo, J. H., Lee, K. G., Park, G. D., Kim, D. J., ... & Hyun, J. S. (2010). The improvement of short-and long-term memory of young children by BF-7. Journal of the Korean Society of Food Science and Nutrition, 39(3), 376-382.

Komatsu, K. (1975). Studies on dissolution behaviors and structural characteristics of silk sericin. Sericultural Experiment Station, 26, 135-256.

Kundu, J., Chung, Y. I., Kim, Y. H., Tae, G., & Kundu, S. C. (2010). Silk fibroin nanoparticles for cellular uptake and control release. International journal of pharmaceutics, 388(1-2), 242-250.

Lee, M. Y., Lee, S. H., Lee, J. S., Min, K. J., Lee, K. G., Yeo, J. H., ... & Lee, W. B. (2004). BF-7 improved memory function and protected neuron from oxidative stress. Korean J. Phys. Anthropol, 17, 313-320.

Marelli, B., Brenckle, M.A., Kaplan, D.L. and Omenetto, F.G. (2016). Silk Fibroin as Edible Coating for Perishable Food Preservation, Scientific Reports |6:25263|

Marolt, D., Augst, A., Freed, L. E., Vepari, C., Fajardo, R., Patel, N., ... & Vunjak-Novakovic, G. (2006). Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials, 27(36), 6138-6149.

Mathur, A. B., & Gupta, V. (2010). Silk fibroin-derived nanoparticles for biomedical applications. Nanomedicine, 5(5), 807-820.

Meinel, L., Hofmann, S., Karageorgiou, V., Zichner, L., Langer, R., Kaplan, D., & Vunjak‐Novakovic, G. (2004). Engineering cartilage‐like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnology and bioengineering, 88(3), 379-391.

Meinel, L., & Kaplan, D. L. (2012). Silk constructs for delivery of musculoskeletal therapeutics. Advanced drug delivery reviews, 64(12), 1111-1122.

Minoura, N., Aiba, S. I., Gotoh, Y., Tsukada, M., & Imai, Y. (1995). Attachment and growth of cultured fibroblast cells on silk protein matrices. Journal of biomedical materials research, 29(10), 1215-1221.

Miyairi, S., & Sugiura, M. (1978). Properties of β-glucosidase immobilized in sericin membrane. Journal of fermentation technology, 56(4), 303-308.

Mondal, M., Trivedy, K., & Nırmal, K. S. (2007). The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.,-a review.

Montalbán, M. G., Coburn, J. M., Lozano-Pérez, A. A., Cenis, J. L., Víllora, G., & Kaplan, D. L. (2018). Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials, 8(2), 126.

Nadiger, G. S., Bhat, N. V., & Padhye, M. R. (1985). Investigation of amino acid composition in the crystalline region of silk fibroin. Journal of applied polymer science, 30(1), 221-225.

Parlak, O. (2001). İpekböceği biyolojisi yardımcı ders kitabı, Ege Üniversitesi Basımevi, Fen Fakültesi Yayınları, No. 171, İzmir. Parlak, O. (2001). İpekböceği Biyolojisi (Yardımcı Ders Kitabı). Ege Üniversitesi Basımevi, Ege Üniversitesi Fen Fakültesi Yayınları, 171.

Sun, W., Gregory, D. A., Tomeh, M. A., & Zhao, X. (2021). Silk fibroin as a functional biomaterial for tissue engineering. International Journal of Molecular Sciences, 22(3), 1499.

Taşkaya Top, B., Özüdoğru, T., Özer, O. O., Bars, T., Polat, K., Yasan Ataseven, Z., & Albayrak, M. (2015). Türkiye’de ipekböcekçiliği yapan işletmelerin sosyo-ekonomik yapısının belirlenmesi. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü Yayınları, (263).

Uebersax, L., Merkle, H. P., & Meinel, L. (2008). Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. Journal of controlled release, 127(1), 12-21.

Wang, X., Kim, H. J., Xu, P., Matsumoto, A., & Kaplan, D. L. (2005). Biomaterial coatings by stepwise deposition of silk fibroin. Langmuir, 21(24), 11335-11341.

Wang, D., Liu, H., & Fan, Y. (2017). Silk fibroin for vascular regeneration. Microscopy research and technique, 80(3), 280-290.

Wang, M. S., Du, Y. B., Huang, H. M., Zhu, Z. L., Du, S. S., Chen, S. Y., ... & Yan, Z. (2019). Silk fibroin peptide suppresses proliferation and induces apoptosis and cell cycle arrest in human lung cancer cells. Acta Pharmacologica Sinica, 40(4), 522-529.

Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., ... & Shi, L. L. (2014). Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes & diseases, 1(1), 87-105.

Wang, X., Yucel, T., Lu, Q., Hu, X., & Kaplan, D. L. (2010). Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials, 31(6), 1025-1035.

Whitmire, R. E., Wilson, D. S., Singh, A., Levenston, M. E., Murthy, N., & García, A. J. (2012). Self-assembling nanoparticles for intra-articular delivery of anti-inflammatory proteins. Biomaterials, 33(30), 7665-7675.

Yan, H. B., Zhang, Y. Q., Ma, Y. L., & Zhou, L. X. (2009). Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. Journal of Nanoparticle Research, 11(8), 1937-1946.

Yang, Y., Tang, L., Tong, L., & Liu, H. (2009). Silkworms culture as a source of protein for humans in space. Advances in Space Research, 43(8), 1236-1242.

Yazıcıoğlu, G. (1993). İpek (Bombyx mori) Fibroininin kimyasal ve kristalin yapısı. Tekstil ve Mühendis, 7(38).

Yeo, J.-H., Lee, K.-G., Lee, Y.-W. and Kim, S.Y. (2003). Simple preparation and characteristics of silk fibroin microsphere, Eur. Pol. J., 39(6), 1195–1199.

Yu-Qing, Z., Mei-Lin, T., Wei-De, S., Yu-Zhen, Z., Yue, D., Yan, M. and Wen-Lin, Z. (2004). Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters, Biomaterials, 25, 3751–3759.

Zhang, W., Moskowitz, R.W., Nuki, G., Abramson, S., Altman, R.D., Arden, N., Bierma-Zeinstra, S., Brandt, K.D., Croft, P., Doherty, M., Dougados, M., Hochberg, M., Hunter, D.J., Kwoh, K., Lohmander, L.S. , … & Tugwell, P. (2008). OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines, Osteoarthritis Cartilage, 16, 137–162.

Zhou, F., Zhang, X., Cai, D., Li, J., Mu, Q., Zhang, W., ... & Ouyang, H. W. (2017). Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta biomaterialia, 63, 64-75.


  • There are currently no refbacks.