Comparison of morphological and DNA barcoding methods in ichthyoplankton species identification

Alpaslan KARA, Ahsen YÜKSEK

Abstract

One of the crucial points of ichthyoplankton research is the accurate identification of species. Generally, ichthyoplankton species identifications are made according to the external morphological characteristics of eggs and larvae, however identifying ichthyoplankton using morphology can be quite difficult in many groups. In this study, the accuracy of morphological identification of fish eggs and larvae was investigated using DNA barcoding. The correct identification rates (accuracy) for fish eggs, determined through morphological examination method, when referenced to mtDNA barcoding, were calculated as 80%. Similarly, for fish larvae, the correct identification rate was determined to be 82%. Therefore, identifying the species of fish eggs and larvae causes considerable error using only morphological reference points. Morphological identification has an acceptable success rate but has moderate reliability in detecting some groups, especially in some rare species. Species identification cannot be made with only DNA barcoding method in ichthyoplankton studies. The researcher must have a high level of knowledge of morphology. However, morphological identifications should be supported with DNA barcoding using an integrative approach to minimize the error rate and obtain more accurate results.

Keywords

Ichthyoplankton, Morphological Identification, mtDNA Barcoding

Full Text:

PDF

References

Ahlstrom, E. H. and Moser, H. G. (1976). Eggs and larvae of fishes and their role in systematic investigations and in fisheries. Revue des Travaux de l’Institut des Peches Maritimes 40, 379–398.

Akbar John, B., Sheikh, H. I., Jalal, K. C. A., Kamaruzzaman, B. Y., Sanower, H., Nur Hanisah, M., Rozihan, M. (2020). DNA Barcoding of Ichthyoplankton and Juvenile Fishes of a Tropical River in Malaysia. In DNA Barcoding and Molecular Phylogeny (pp. 237-251). Springer, Cham.

Almeida, F. S., Frantine-Silva, W., Lima, S. C., Garcia, D. A., & Orsi, M. L. (2018). DNA barcoding as a useful tool for identifying non-native species of freshwater ichthyoplankton in the neotropics. Hydrobiologia, 817(1), 111-119.

Bremer, J. R., Smith, B. L., Moulton, D. L., Lu, C. P., & Cornic, M. (2014). Shake and stew: a non‐destructive PCR‐ready DNA isolation method from a single preserved fish larva. Journal of Fish Biology, 84(1), 267-272.

Ayala, D., Riemann, L., & Munk, P. (2016). Species composition and diversity of fish larvae in the Subtropical Convergence Zone of the Sargasso Sea from morphology and DNA barcoding. Fisheries Oceanography, 25(1), 85-104.

Baumgartner, G., Nakatani, K., Gomes, L., Bialetzki, A., and Sanches, P. (2004). Identification of spawning sites and natural nurseries of fishes in the upper Paraná River. Brazil. Environ. Biol. Fish. 71, 115–125. doi: 10.1007/s10641-004- 0098-z

Becker, R. A., Sales, N. G., Santos, G. M., Santos, G. B., Carvalho, D. C. (2015). DNA barcoding and morphological identification of neotropical ichthyoplankton from the Upper Paraná and São Francisco. Journal of Fish Biology, 87(1), 159-168.

Bhattacharya, M., Sharma, A. R., Patra, B. C., Sharma, G., Seo, E. M., Nam, J. S., Lee, S. S. (2016). DNA barcoding to fishes: current status and future directions. Mitochondrial DNA Part A, 27(4), 2744-2752.

Briski, E., S. Ghabooli, S. A. Bailey, H. J. MacIsaac, (2016). Are genetic databases sufficiently populated to detect nonindigenous species? Biological Invasions 18: 1911–1922

Burrows, M., Browing, J. S., Breitbart, M., and Murawski, S. A. (2018). DNA barcoding reveals clear delineation between spawning sites for neritic versus oceanic fishes in the Gulf of Mexico. Fish. Oceanogr. 28, 228–239. doi: 10.1111/ fog.12404

Chakraborty C, Doss CG, Patra BC, Bandyopadhyay S. (2014). DNA barcoding to map the microbial communities: Current advances and future directions. Appl Microbiol Biotechnol 98:3425–36.

Chen, W. T., Li, C., Yang, J. P., Zhu, S. L., Li, J., Li, Y., et al. (2021). Temporal species-level composition of larvae resources in the lower Pearl River drainage and implications for species’ reproductive cycles. Gene 776:145351. doi: 10. 1016/j.gene.2020.145351

Duke, E. M., & Burton, R. S. (2020). Efficacy of metabarcoding for identification of fish eggs evaluated with mock communities. Ecology and evolution, 10(7), 3463-3476.

Deters, J. E., Chapman, D. C., McElroy, B. (2013). Location and timing of Asian carp spawning in the lower Missouri River. Environmental Biology of Fishes, 96, 617-629.

Frantine-Silva, W., Sofia, S., Orsi, M., and Almeida, F. (2015). DNA barcoding of freshwater ichthyoplankton in the neotropics as a tool for ecological monitoring. Mol. Ecol. Resour. 15, 1226–1237. doi: 10.1111/1755-0998.12385

Gleason, L. U., & Burton, R. S. (2012). High‐throughput molecular identification of fish eggs using multiplex suspension bead arrays. Molecular Ecology Resources, 12(1), 57-66.

Harada, A. E., Lindgren, E. A., Hermsmeier, M. C., Rogowski, P. A., Terrill, E., & Burton, R. S. (2015). Monitoring spawning activity in a southern California marine protected area using molecular identification of fish eggs. PloS one, 10(8), e0134647.

Hebert, P. D. N., A. Cywinska, S. L. Ball & J. R. DeWaard, (2003a). Biological identifications through DNA barcodes. Proceedings of the Royal Society B Biological Sciences 270: 313–321.

Hebert, P. D. N., S. Ratnasingham & J. R. DeWaard, (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B Biological Sciences 270: 96–99

Hintz, W. D., Mattes, B. M., Schuler, M. S., Jones, D. K., Stoler, A. B., Lind, L., Relyea, R. A. (2017). Salinization triggers a trophic cascade in experimental freshwater communities with varying food‐chain length. Ecological Applications, 27(3), 833-844.

Hou, G., Wang, J., Liu, L., Chen, Y., Pan, C., Lin, J., & Zhang, H. (2021). Assemblage structure of the ichthyoplankton and its relationship with environmental factors in spring and autumn off the Pearl River Estuary. Front Mar Sci, 1-13.

Hubert, N., Espiau, B., Meyer, C., and Planes, S. (2015). Identifying the ichthyoplankton of a coral reef using DNA barcodes. Mol. Ecol. Resour. 15, 57–67. doi: 10.1111/1755-0998.12293

Ivanova, N. V. (2007), Universal primer cocktails for fish DNA barcoding, Molecular Ecology Notes, 7(4), 544–548

Kara A. (2015), Investigation of Abundance and Distribution of Eggs and/or Larvae of Some Teleost Fishes in Erdek Bay, Master Thesis, Istanbul University Institute of Marine Sciences and Management, 114 p.

Kelso, W. E., Kaller, M. D., Rutherford, D. A. (2012). Collecting, processing, and identification of fish eggs and larvae and zooplankton. Fisheries techniques, 363-452.

Kerr, M., Browning, J., Bønnelycke, E. M., Zhang, Y., Hu, C., Armenteros, M., et al. (2020). DNA barcoding of fish eggs collected off northwestern Cuba and across the Florida Straits demonstrates egg transport by mesoscale eddies. Fish. Oceanogr. 29, 340–348. doi: 10.1111/fog.12475

Ko, H. L., Wang, Y. T., Chiu, T. S., Lee, M. A., Leu, M. Y., Chang, K. Z., ... & Shao, K. T. (2013). Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding. PLoS One, 8(1), e53451.

Lin, H. Y., Chiu, M. Y., Shih, Y. M., Chen, I. S., Lee, M. A., & Shao, K. T. (2016). Species composition and assemblages of ichthyoplankton during summer in the East China Sea. Continental Shelf Research, 126, 64-78.

Leyva-Cruz, E., Vásquez-Yeomans, L., Carrillo, L., and Valdez-Moreno, M. (2016). Identifying pelagic fish eggs in the southeast Yucatan Peninsula using DNA barcodes. Genome 59, 1117–1129. doi: 10.1139/gen-2015-0151.

Nakatani, K., A. A. Agostinho, G. Baumgartner, A. Bialetzki, P. V. Sanches, M. C. Makrakis & C. S. Pavanelli, (2001). Ovos e larvas de peixes de a´gua doce: desenvolvimento e manual de identificac¸a˜o. Eduem, Maringa´.

Pegg GG, Sinclair B, Briskey L, Aspden WJ (2006). MtDNA barcode identification of fish larvae in the southern Great Barrier Reef , Australia. Scientia Marina, 70, 7–12.

Reynalte-Tataje, D. A., A. P. O. Nun˜er, M. C. Nunes, V. Garcia, C. A. Lopes & E. Zaniboni-Filho, (2012). Spawning of migratory fish species between two reservoirs of the upper Uruguay River, Brazil. Neotropical Ichthyology 10: 829–835.

Shao, K. T., Chen, K. C., & Wu, J. H. (2002). Identification of marine fish eggs in Taiwan using light microscopy, scanning electric microscopy and mtDNA sequencing. Marine and Freshwater Research, 53(2), 355-365.

Taylor, N. D. (2016). The use of mitochondrial DNA for the identification of fish in the early stages of development from the eastern shores of Lake Huron, Ontario, Canada (Doctoral dissertation, Laurentian University of Sudbury).

Teixeira, D., Hilário, H., Rosa, G., Santos, G., Santos, G., & Carvalho, D. (2021). Ichthyoplankton metabarcoding as a tool for studying fish reproductive dynamics. In ARPHA Conference Abstracts (Vol. 4, p. e65404). Pensoft Publishers.

Trevethan, R. (2017). “Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice”. Frontiers in Public Health 5-307

Triant, D. A. and Whitehead, A. (2009). Simultaneous extraction of high-quality RNA and DNA from small tissue samples. Journal of Heredity 100, 246–250.

Valdez-Moreno M, Va´squez-Yeomans L, Elı´as-Gutie´rrez M, Ivanova NV, Hebert PDN (2010). Using DNA barcodes to connect adults and early life stages of marine fishes from the Yucatan Peninsula, Mexico: potential in fisheries management. Mar Freshw Res 61: 665–671.

Victor BC, Hanner R, Shivji M, Hyde J, Caldow C, (2009). Identification of the larval and juvenile stages of the cubera snapper, Lutjanus cyanopterus, using DNA barcoding. Zootaxa 2215, 24–36

Yang, L., Tan, Z., Wang, D., Xue, L., Guan, M., Huang, t., Li, L. (2014). Species identification through mitochondr

ial rRNA genetic analysis, Scientific Reports, 4 : 4089. DOI: 10.1038/srep04089

Refbacks

  • There are currently no refbacks.