Insight on microbial biofilms and recent antibiofilm approaches

Fatima SHATILA, Tansel YALÇIN, İhsan YAŞA

Abstract

Biofilms are organized sessile microbial communities embedded in a self-secreted extracellular matrix. These cells exhibit modified morphological, physiological and metabolic characteristics. Biofilms represent a survival strategy that confers protection against wide range of adverse environmental conditions (UV, antimicrobial, host immune system). The persistence of these microbial communities on different biotic and abiotic surfaces represents a real problem for both food and medical sectors. Their formation on food processing surfaces and biomedical devices is responsible for almost 80% of microbial infections. In addition to the health problems, the economic burden caused biofilms is enormous which necessitates the development of biofilm prevention or elimination strategies. Conventional approaches based on physical, mechanical and chemical interventions are not efficient anymore due to increased resistance of biofilm organisms. Biofilm cells exhibit higher resistance to antimicrobial agents by 100- 1000 folds when compared to their planktonic counterparts. Such findings prove the seriousness of the threat imposed by these communities and emphasize the urgent need to come up with new antibiofilm approaches.

The increased interest in biofilm research has provided deeper knowledge concerning these communities, which led to impressive progress in developing novel antibiofilm tools. The bulk of these emerging strategies focuses on green technology or development new molecules that can be used as adjuvants in combination with antimicrobial agents. On the other hand, some approaches aim to inhibit adhesion via targeting microbial surface proteins such as adhesins, or through engineering antiadhesive surfaces through chemical or mechanical modifications.

Keywords

Biofilms, Antibiofilm, Antiadhesion, Biofilm formation

Full Text:

PDF

References

Abedon S.T., 2015. Ecology of antibiofilm agents II: Bacteriophage exploitation and biocontrol of biofilm bacteria. Pharmaceuticals, 8: 559- 598.

Akbari T., Pourhajibagher M., Hosseini F., Chiniforush N., Gholibegloo E., Khoobi M., Shahabi S., Bahador A. 2017. The effect of indocyanine green loaded on a novel nano-graphene oxide for high performance of photodynamic therapy against Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 20: 148- 153.

Almaaytah A., Qaoud M.T., Mohamad G.K., Abualhaijaa A., Knappe D., Hoffmann R. and Al-Balas Q. 2018. Antimicrobial and antibiofilm activity of UP-5, an ultrashort antimicrobial peptide desiged using only arginine and biphenyalanine. Pharmaceuticals, 11: 3- 21.

Andreani E.S., Villa F., Cappitelli F., Krasowska A., Biniariz P., Lukaszewicz M. and Secundo, F. 2017. Coating polypropylene surfaces with protease weakens the adhesion and increases the dispersion of Candida albicans cells. Biotechnology Letters, 39: 423- 428.

Azeredo J., Azevedo N.F., Briandet R., Cerca N., Coenye T., Costa A.R., Desvaux M., Di Bonaventura G., Hebraud M., Jaglic Z., Kacaniova M., Knochel Louenco A., Mergulhao F., Meyer R.L., Nychas G., Simoes M., Tresse O. and Sternberg, C. 2016. Critical Review on Biofilm Methods. Critical Reviews in Microbiology, pp: 1-39, http://dx.doi.org/10.1080/1040841X.2016.1208146.

Baidamashina D.R., Trizna E.Y., Holyavka M.G., Bogachev M.I., Artyukhov V.G., Akhatova F.S., Rozhina E.V., Fakhrullin R.F. and Kayumov A.R. 2017. Targeting microbial biofilms using Ficin, a nonspecific plant protease. Scientific Reports, 7: 1-12.

Baker P., Hill P.J., Snarr B.D., Alnabelseya N., Pestrak M.J., Lee M.J., Jennings L.K., Tam J., Melnyk R.A., Parsek M.R., Sheppard D.C., Wozniak D.J., Howell P.L. 2016. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Scientific Advances, 2: 1-10.

Balabanova L., Podvolotskya Slepchenko L., Eliseikina M., Noskova Y., Nedashokovskaya O., Son O., Tekutyeva L. and Rasskazov V. 2017. Nucleolytic enzymes from the marine bacterium Cobetia amphilecti KMM 396 with antibiofilm activity and biopreservative Effect on meat product. Food Control, 78: 270- 278.

Banar M., Emaneini M., Satrazadeh M., Abdellahi N., Beigveri R., Leewen W.R.V. and Jabalameli F. 2016. Evaluation of Mannosidase and Trypsin enzymes effect on biofilm production of Pseudomonas aeruginosa isolated from burn would infections. PLoS ONE, 10:1-11.

Bangerjee I., Pangule R.C. and Kane R.S. 2011. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23: 690- 718.

Banerjee I., Pangule R.C., Kane R.S. 2011. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria and marine organisms. Advanced Materials, 23: 690- 718.

Batoni G., Maisetta G. and Esin S. 2016. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochemica et Biophysica Acta, 1858: 1044-1060.

Baugh S. 2013. The Role of Multidrug Efflux Pumps in Biofilm Formation of Salmonella enterica serovar Typhimurium. Doctoral dissertation, University of Birmingham, Birmingham, UK, 243p.

Beloin C., Renard S., Ghigo J.M. and Lebeaux D. 2014. Novel Approaches to combat bacterial biofilms. Current opinion in Pharmacology, Elseivier, 18: 61- 68.

Beytollahi L., Pourhajibagher M., Chiniforush N., Ghorbanzadeh R., Raoofian R., Pourakbari B. and Bahador A. 2017. The efficacy of Photodynamic and Photothermal Therapy on Biofilm Formation of Streptococcus mutans: An İnvitro Study. Photo Diagnosis and Photodynamic Therapy, 17: 56- 60.

Borges K.A., Furian T.Q., Souza S.N., Menezes R., Tondo E.C., Salle C.T.P., Morales H.L.S. and Nascimento V.P. 2018. Biofilm formation capacity of Salmonella serotypes at different temperature conditions, Pesquisa Veterinaria Brasileira, 38 (1): 71- 76.

Butt A. and Khan A. 2015. Antibiotics resistance for bacterial biofilms. Middle East Journal of Business, 10 (4): 38- 45.

Cao P., Li, W.W., Morris A.R., Horrocks P.D., Yuan C.Q. and Yang Y. 2018. Investigation of the antibiofilm capacity of peptide modified stainless steel. Royal Society Open Science, 5: 1-14.

Cegelski L., Pinker J.S., Hammer N.D., Cusumano C.K., Hung C.S.,Chorell E., Aberg V., Walker J.N., Seed P.C., Almqvist F., Chapman M.R. and Hultgren S.J. 2009. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nature Chemical Biology, 5(12): 913- 919.

Chandki R., Banthia P. and Vanthia R., 2011. Biofilms: A microbial home. Journal of Indian Society of Periodontology, 15(2): 111- 114.

Chaudhry W.N., Concepcion-Acevedo J., Park T., Andleeb S., Bull J.J. and Levin B.R. 2017. Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS ONE, 12: 1-16.

Cheng L., Yan X., Wu M., Li W. and Deng L., 2017. Development of an aptamer-ampicillin conjugate for treating biofilms. Biochemical and Biophysical Research Communications, 483: 847- 854.

Chiniforush N., Pourhajibagher M., Parker S., Shahabi S. and Bahador A., 2016. The invitro effect of antimicrobial photodynamic therapy with indocyanin green on Enterococcus faecalis: Influence of a washing vs non washing procedure, Photodiagnosis and Photodynamic Therapy, 16: 119- 123.

Choi N.Y., Bae Y.M. and Lee S.Y., 2015, Cell Surface Properties and Biofilm Formation of Pathogenic Bacteria. Food Science and Biotechnology, 24 (6): 2257- 2264.

Costa G.A., Rossatto E.C.P., Medeiros A.W., Correa A.P.F., Brandelli A., Grazzon A.P.G. and Da Motta A.D.S. 2018. Evaluation antibacterial and antibiofilm activity of the antimicrobial peptide P34 against Staphylococcus aureus and Enterococcus faecalis. Annals of the Brazilian Academy of Science, 90: 73- 84.

Costa E.M., Silva S., Vicente S., Neto C., Castro P.M., Veiga M., Madureira R., Tavaria F. and Pintado M.M. 2017. Chitosan nanoparticles as alternative anti Staphylococci agents: Bactericidal, antibiofilm and antiadhesive effects. Materials Science and Engineering, 79: 221- 226.

Costerton J.W., Geesey G.G. and Cheng K-J. 1978. How Bacteria Stick. Scientific American, 238 (1): 86- 95.

Corcoran M. 2013. Salmonella enterica biofilm formation and survival of disinfection treatment on food contact surfaces. PhD dissertation, National university of Ireland Galway, Irland, Gelie, 290 p.

Dawgul M., Maciejewska M., Jaskiewicz M., Karafova A. and Kamysz, W. 2014. Antimicrobial peptides as potential tool to fight bacterial biofilm. Acta Poloniae Pharmaceutica Drug Research, 71: 39-47.

Dhayakaran R. and Neethirajan S. 2017. Microscopic methods in biofilm research. In: Biofilms: Emerging Concepts and Trends, Murthy, S. (Ed.) Narosa Publishers, İndia, 24 p.

Diogo P., Fernandes C., Caramelo F., Mota M., Miranda I.M., Faustino M.A.F., Neves M.G.P.M.S, Uliana M.P., de Oliviera K.T., Santos J.M. and Goncalves T. 2017. Antimicrobial Photodynamic Therapy against Endodontic Enterococus faecalis and Candida albicans Mono and mixed biofilms in the presence of photosensitizers: A comparative Study with Classical Endodontic Irrigants. Frontiers in Microbiology, 8: 1-11.

Donlan R.M. 2002 Biofilms: Microbial Life on Surfaces. Emerging Infectious Diseases, 8 (9): 881- 890.

Donlan R.M. and Costerton J.W. 2002, Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15 (2) 167-193.

Ergin M.A. 2017. Bacterial Biofilm Detection Methods in the Laboratory. Antimicrobial Research: Novel Bioknowledge and Educational Programs, Mandez-vilas (Ed). Formatex, Spain, pp: 289- 293.

Fleming D. and Rumbaugh P. 2017. Approaches to Dispersing Medical biofilms. Microorganisms, 5: 15- 30.

Flemming H.C. and Wingender J. 2010. The Biofilm Matrix. Nature Reviews in Microbiology, 8: 623- 633.

Franklin M.J., Chang C., Akiyama T. and Bothner B. 2015. New Technologies for Studying Biofilms. Microbiology Spectrum, 3(4): 1-41.

Garcia-Gonzalo D. and Pagan R. 2015. Influence of Environmental Factors on Bacterial Biofilm Formation in the Food industry: A Review. PostDoc Journal, 3(6): 3- 13.

Garrett T.R., Bhakoo M. and Zhang Z. 2008. Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18: 1049- 1056.

Gordya N., Yakovlev A., Kruglikova A., Tulin D., Potolitsina E., Suborova T., Bordo D., Rosano C. and Chernysh S. 2017. Natural Antimicrobial Peptide Complexes in the Fighting of antibiotic Resistant Biofilms: Calliphora vicina medical maggots. PLoS One, 12(3): 1-19.

Graham M.V. and Cady N.C. 2014. Nano and microscale topographies for the prevention of bacterial surface fouling. Coatings, 4,37- 59.

Guo Y., Wang L., Lei J., Xu J. and Han L. 2017. Antimicrobial and Antibiofilm Activity of human cationic antibacterial peptid (LL-37) and its analogs against Pan-Drug Resistant Acinetobacter baumannii. Jundishapur Journal of Microbiology, 10: 1-7.

Gutierrez D., Rodriguez-Rubio L., Martinez B., Rodriguez A. and Garcia P. 2016. Bacteriophages as Weapons Against Bacterial Biofilms in the Food İndustry. Frontiers in Microbiology, 7: 1-15.

Hall C.W. and Mah T.F. 2017. Molecular Mechanisms of biofilm Based Antibiotic Resistance and Tolerance in Pathogenic Bacteria. FEMS Microbiology Reviews, 41: 276- 301.

Haris Z. and Khan A.U. 2017. Selenium Nanoparticle Enhanced Photodynamic Therapy Against Biofilm Forming Streptococcus mutans. International Journal of Life Sciences Scientific Research, 3: 1287- 1294.

Harper D.R., Parracho H.M.R.T., Walker J., Sharp R., Hughes G., Wethen M., Lehman S. and Morales S. 2014. Bacteriophages and biofilms. Antibiotics, 3: 270- 284.

Hogan S., Zaptoczna M., Stevens N.T., Humphreys H., O’Gara J.P. and O’Neill 2017. Potential use of Targeted Enzymatic Agents in the Treatment of Stahyloccocus aureus Biofilm-Related İnfections. Journal of Hospital Infection, 96:177-182.

Hu L. 2017. The Use of Nanoparticles to Prevent and Eliminate Bacterial Biofilms. In Antimicrobial Research Novel Bioknowledge and educational Programs, Mendez-Vilas, A. (Ed) Formatex, Spain, 344- 350 pp.

Hu X., Huang Y.Y., Wang Y., Wang X. and Hamblin M.R. 2018. Antimicrobial Photodynamic Therapy to control Clinically Relevant Biofilm İnfections. Frontiers in Microbiology, 9: 1-24.

Jefferson K.K. 2004. What drives bacteria to produce a biofilm? FEMS Microbiology Letters, 236: 163- 173.

Junter G.A., Thebault P. and Lebrun L. 2015 Polysaccharide- based antibiofilm surfaces. Acta Biomaterialia, 30: 13-25.

Kalpana B.J., Aarthy S., Pandian S.K. 2012. Antibiofilm activity of alpha-amylase from Bacillus subtilis S8-18 Against Biofilm Forming Human Bacterial Pathogen. Applied Biochemistry and Biotechnology, 167: 1778- 1794.

Kaplan J.B. 2010. Biofilm Dispersal: Mechanisms, Clinical Implications, and Potential Therapeutic Uses. Journal of Dental Research, 89 (3) 205- 218.

Kim M.K., Kang H.K., Ko S.L., Hong M.J., Bang J.K., Seo C.H. and Park Y. 2018. Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug- resistant Pseudomonas aeruginosa. Scientific Reports, 8: 1-16.

Krasowska A. and Sigler K. 2014. How Microorganisms Use Hydrophobicity and What Does This Mean for Human Needs? Frontiers in Cellular and Infection Microbiology, 4: 1-7.

Hsu L.C., Fang J., Borca-Tasciuc D.A., Worobo R.W. and Moraru C.I. 2013. Effect of micro and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces. Applied and Environmental Microbiology, 79 (8): 2703- 2712.

Kumaran D., Taha M., Yi Q., Ramirez-Arcos S., Diallo J.S., Carli A. and Abdelbary H. 2018. Does Treatment Order Matter? Investigating the ability of bacteriophage to Augment Antibiotic Activity Against Staphylococcus aureus biofilms. Frontiers in Microbiology, 9: 1- 11.

Kyaw K., Harada A., Ichimaru H., Kawagoe T., Yahiro K., Morimura S., Ono K., Tsutsuki H., Sawa T. and Niidome T. 2017. Silver Nanoparticles as Potential Antibiofilm Agents Against Human Pathogenic Bacteria. Chemistry Letters. 46: 1-3, 594

Lagree K. 2018 Impact of surface topography on biofilm fomration by Candida albicans. PlosONE, 13:e0197925.

Lewis A.L. 2000. Phosphorylcholine- Based Polymers and their Use in the Prevention of Biofouling. Colloids and Surfaces B: Biointerfaces, 18: 261- 275.

Lewis K. 2001. Riddle of Biofilm Resistance. Antimicrobial Agents and Chemotherapy, 45 (9): 999- 1007.

Li J., Zhang K., Ruan L., Chin S.F., Wickramansinghe N., Liu H., Ravikumar V., Ren J., Duan H., Yang L. and Chan- Park M.B. 2018. Block Copolymer Nanoparticles Remove Biofilms of Drug- Resistant Gram Positive Bacteria by Nanoscale Bacterial Debridement. Nano Letters, 18: 4180-4187.

Li X.H., Kim S.K. and Lee J.H. 2017. Anti-biofilm effects of anthranilate on a broad range of bacteria. Scientific Reports, 7: 1-12.

Lu T.K. and Collins J.J. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. PNAS, 104: 11197- 11202.

Mao B., Cheng L., Wang S., Zhou J., Deng L. 2017. Combat biofilm by bacteriostatic aptamer- functionalized graphene oxide. Biotechnology and Applied Biochemistry, doi: 10.1002/bab.1631.

Melo L.D.R., Bandao A., Akturk E., Santos S.B. and Azeredo J. 2018. Characterization of a new Staphylococcs aureus kayvirus Harboring a lysine active against biofilms. Viruses, 10: 1-16.

Miquel S., Lagrageuille R., Souweine B. and Forestier C. 2016. Antibiofilm activity as a health issue. Frontiers in Microbiology, 7: 1-14.

Misba L., Kulsharetha S. and Khan A. 2016. Antibiofilm action of a toluidine blue O-silver nanoparticle conjugate on Streptococcus mutans: a mechanism of type I Photodynamic therapy. Biofouling The Journal of Bioadhesion and Biofilm Research, 32: 313- 328.

Misba L., Zaidi S. and Khan A.U. 2018. Efficacy of Photodynamic therapy against Streptococcus mutans biofilm: Role of Singlet oxygen. Journal of Photochemistry and Photobiology, 183: 16-21.

Mohamed F.M., Brezden A., Mohammad H., Chmeilewski J. and Seleem M.N. 2017. A Short D-Enantiomeric Antimicrobial Peptide with Potent İmmunomodulatory and antibiofilm Activity Against Multidrug Resistant Pseudomonas aeruginosa and Acinetobacter baumannii, Scientific Reports, 7: 1-13.

Mohamed S.H., Mohamed M.S.M., Khalil M.S., Mohamed W.S. and Mabrouk M.I. 2018. Antibiofilm Activity of Papain Enzyme Against Pathogenic Klebsiella pneumonia. Journal of Applied Pharmaceutical Science, 6: 163- 168.

Moldoveanu A.M. 2012. Environmental Factors Influences on Bacterial Biofilm Formation. Annals of the Romanian Society for Cell Biology, 17 (1): 118- 126.

Mu H., Ang J., Liu Q., Sun C., Wang T. and Duan J. 2015. Potent Antibacterial Nanoparticles Against Biofilm and İntracellular Bacteria. Scientific Reports, 6: 1-9.

Namasivayam S.K.R., Christo B.B., Karthigai Arasu S.M., Kumar K.A.M. and Deepak K. 2013. Antibiofilm effect of biogenic silver nanoparticles coated medical devices against biofilm of clinical isolate of Staphylococcus aureus. Global Journal of Medical Research Pharma Drug Discovery Toxicology and Medicine, 13: 1-7.

Nasayif Muslim D.S., Hasan A.M. and Mahdi N.Z. 2016. Antibiofilm and antiadhesive properties of pectinase purified from Pseudomonas stutzeri isolated from spoilt orange. Advances in Environmental Biology, 10:91-98.

Nemezio M.A., DE souza Farias S.S., Borsatto M.C., Aires C.P. and Milori Corona S.A. 2017. Effect of Methylene Blue- İnduced Photodynamic Therapy on a Streptococcus mutans Biofilm Model. Photodiagnosis and Photodynamic Therapy, 201; 234- 237.

Neoh, K.G., Li, M., Kang, E.T., Chiong, E. and Tambyah, P.A., 2017, Surface Modification Strategies for Combating Catheter Related Complications: Recent Advances and Challenges, Journal of Material Chemistry B, 5: 2045- 2067.

Ning Y., Cheng L., Ling M., Feng X., Chen L., Wu M., 2015. Effcient Suppression of Biofilm Formation by a Nucleic Acid Aptamer. FEMS Pathogens and Disease, 73: 1-8.

Norris K. 2014. The identification and validation of novel aptamers to Glioma. Master Degree, University of Central Lancashire-UK, 160 p.

Oliver S., Wagh H., Liang Y., Yang S. and Boyer C. 2018. Enhancing the Antimicrobial and Antibiofilm Effectiveness of Silver Nanoparticles Prepared by Green Synthesis. Journal of Materials Chemistry , 6, 4124- 4138.

Palmer J., Flint S. and Brooks J. 2007. Bacterial Cell Attachment, the Beginning of a Biofilm. Journal of Industrial Microbiology and Biotechnology, 34: 577- 588.

Pan M., Zhu L., Chen L., Qiu Y. and Wang J. 2016. Detection Techniques for Extracellular Polymeric Substances in Biofilms, A Review. Biosources, 11(3): 8092- 8115.

Paraje M.G. 2011. Antimicrobial resistance in biofilms, Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. A. Méndez-Vilas, A. (Ed.). Formatex Research Center, Badajoz, Spain, 736–744 pp.

Peng D. 2016. Biofilm formation of Salmonella. In: Microbial Biofilms- Importance and Applications. Dhanasekaran, D. and Thajuddin, N. (Eds.) Intech Open, UK, 21 p.

Peng C., Vishwakarma A., Li Z., Miyoshi T., Barton H.A. and Joy A. 2018. Modification of a conventional polyurethane composition provides significant anti-biofilm activity agaisnt Echerichia coli. Polymer Chemistry, 9,3195.

Perera-Costa D., Morales Bruque J., Gonzalez Martin M.L., Gomez-Garcia A.C. and Vadillo-Rodriguez V. 2014. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns, Langmuir, 30:4633- 4641.

Poole K. 2012 Bacterial Stress responses as determinants of antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 67: 2069- 2089.

Pourhajibagher M., Chiniforush N., Shahabi S., Ghorbanzadeh R. and Bahador A. 2016. Sub Lethal doses of photodynamic therapy affect biofilm formation ability and metabolic activity of Enterococcus faecalis. Photodiagnosis and Photodynamic Therapy, 15: 159- 166.

Pourhajibagher M., Chiniforush N., Shahabi S., Palizvani M., Bahador A. 2018. Antibacterial and antibiofilm efficiacy of antimicrobial photodynamic therapy against intracanal Enterococcus faecalis: an invitro comparative study with traditional endodontic irrigation solutions. Journal of Dentistry of Tehran University of Medical Sciences, 15: 197- 204.

Prakash B., Veeregowda B.M. and Krishnappa G., 2003. Biofilms: a survival strategy of bacteria. Current Science, 85 (9): 1299- 1307.

Rahman M.D.R.T., Lou Z., Yu F., Wang P., Wang H. 2017. Anti-quorum sensing and anti-biofilm activity of Amomum Tsaoko (Amommum Tsao-ko Crevost et Lemarie) on foodborne pathogens. Saudi Journal of Biological Sciences, 24: 324- 330

Ramachandran R. and Sangeetha D. 2017. Antibiofilm efficacy of silver nanoparticles against biofilm forming multidrug resistant clinical isolates. The Pharma Innovation Journal, 6: 39- 43.

Ramasamy M., Lee J. 2016. Recent Nanotechnology approaches for prevention and treatment of biofilm- associated infections on medical devices. Biomedical Research International, 2016: 1-17.

Ravindran D., Ramanathan S., Arunachalam K., Jeyyaraj G.P., Shunmugiah K.P. and Arimugam V.R. 2017. Phytosynthesized silver nanoparticles as antiquorum sensing and antibiofilm agent against the nosocomial pathogen Serratia marcescens: an invitro study. Journal of Applied Microbiology, 124: 1425- 1440.

Renner L.D. and Weibel D.B. 2011. Physicochemical regulation of biofilm formation. MRS Bulletin, 36(5): 347- 355.

Roy R, Tiwari M, Donelli G and Tiwari V. 2018. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their medhanisms of action. Birulence 9:522-554

Sadekuzzman M., Yang S., Mizan M.F.R. and Ha S.D. 2015. Current and recent advanced strategies for combating biofilms. Comprehensive Reviews in Food Science and Food Safety, 14: 491- 509.

Singh S., Singh S.K., Chowdhury I. and Singh R. 2017. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The Open Microbiology Journal, 11: 53- 62.

Singh V.K., Mishra A. and Jha B. 2017. Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis Extract by Attenuating the Quorum sensing- controlled virulence Factor Production in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 7: 1-10.

Skogman M.E., Kanerva S., Manner S., Vuorela P.M. and Fallarero A. 2016. Flavones as Quosum sensing inhibitors identified by a newly optimized screening plateform using Chromobacterim violaceum as Reporter bacteria. Molecules, 21: 1-11, 1211.

Slomberg D.L., Lu Y., Broadnax A.D., Hunter R.A., Carpenter A.W. and Schoenfisch M.H. 2013. Role of size and shape on biofilm eradication for nitric oxide releasing silica nanoparticles. ACS Applied Materials and Interfaces, 5: 9322-9329.

Snarr B.D., Baker P., Bamford N.C., Sato Y., Liu H., Lehoux M., Gravelat F.N., Ostapska H., Baistrocchi S.R., Cerone R.P., Filler E.E., Parsek M.R., Filler S.G., Howell P.L. and Sheppard D.C. 2017. Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity. PNAS. 114: 7124-7129.

Song F., Koo H. and Ren D. 2015. Effects of material properties on bacterial adhesion and biofilm formation. Critical Reviews in Oral Biology and Medicine, 94 (8): 1027- 1034.

Sousa A.M., Machado I. and Pereira M.O. 2011. Phenotypic switching: An opportunity to bacteria thrive. Science against Microbial Pathogens: Communicating Current Research and Technological Advances (Mendez-Vilas, A. (Ed.) Formatex Research Center, Spain, Microbiology Series N3, 1: 252-262.

Steenackers H., Hermans K., Vanderleyden J., De Keersmaecker S.C.J. 2012. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Research International, 45: 502-531.

Stewart P.S. 2002. Mechanisms of antibiotic resistance in bacterial biofilms. International Journal of Medical Microbiology, 292, 107- 113.

Torelli R., Cacaci M., Papi M., Sterbini F.P., Martini C., Posterraro B., PLamieri V., De Spirito M., Sanguinetti M. and Bugli F. 2017. Different effects of matrix degrading enzymes towards biofilms formed by E. faecalis and E. faecium clinical isolates. Colloids and Surfaces, 158: 349- 355.

Totsika M., Kostakioti M., Hannan T.J., Upton M., Beatson S.A., Janetka J.W., Hultgren S.J. and Schembri M.S. 2013. A FimH Inhibitor Prevents Acute Bladder Infection and Treats Chronic Cystitis Caused by Multidrug Resistant Uropathogenic Escherichia coli ST131, Journal of Infectuious Disease. 208: 921- 928.

Toyofuku M., Inaba T., Kiyokawa T., Obana N., Yawata Y. and Nomura N., 2016. Environmental factors that shape biofilm formation. Bioscience, Biotechnology and Biochemistry, 80 (1): 7-12.

Vaikundamoorthy R., Rejendran R., Selvaruja A., Moorthy K., Perumal S. 2018. Develoment of thermostable amaylase enzyme from Bacillus cereus for potential antibiofilm activity. Bioorganic Chemistry, 77: 494-506

Van Houdt R., Michiels C.W. 2010. Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109: 1117-1131.

Wang L.S., Gupta A. and Rotello V.M. 2016. Nanomaterials for the treatment of bacterial biofilms. ACS Infectious Diseases, 2(1):3-4.

Wang S., Mao B., Wu M., Liang J., Deng L. 2017. Influence of aptamer-targeted antibiofilm agents for treatment of Pseudomonas aeruginosa biofilms. Antonie Van Leeuwenhoek, 111:199- 208.

Watters, C.M., Burton, T., Kirui, D.K., Millenbaugh, N.J., 2016, enzymetic degradation of in vitro Staphylococcus aureus biofilms supplemented with human plasma, Infection and Drug Resistance, 9: 71- 78.

Wilson C., Lukowicz R., Merchant S., Valquier-Flynn H., Caballero J., Sandoval J., Okuom M., Huber C., Durham Brooks T., Wilson E., Clement B., Wentworth C.D. and Holmes A.E. 2017. Quantitative and qualitative Assessment Methods for biofilm growth: A mini- review. Research and reviews. Journal of Engineering and Technology, 6 (4):1-42.

Wood T.K., Knabel S.J. and Kwan B.W. 2013. Bacterial Persister Cell Formation and Dormancy. Applied and Environmental Microbiology, 79 (23): 7116- 7121.

Yssel A.E.J, 2017, Perturbations in nucleotide biosynthesis inhibits Salmonella biofilm formation, PhD dissertation, Ku leuven university, Belgium, 244 p.

Zaptoczna M., Forde E., Hogan S., Humphreys H., O’Gara J.P., Fitzgerald-Hughes D., Dvocelle M. and O’Neill E. 2017. Eradication of Staphylococcus aureus biofilm infections using synthetic antimicrobial peptides. The Journal of Infectious Diseases, 215: 975- 983.

Zhang H. and Chiao M. 2015. Antifouling coatings of poly (dimethylsiloxane) devices for biological and biomedical applications. Journal of Medical and Biological Engineering, 35: 143- 155.

Zhang Y., Brackman G. and Coenye T. 2017. Pitfalls associated with evaluating enzymatic quorum quenching activity: the case of MomL and its effect on Pseudomonas aeruginosa and Acinetobacter baumanni biofilms. Peer J- The Journal of Life and Environmental Sciences, 5: 1-18.

Zhao X., Zhao F., Wang J., Zhong N. 2017. Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances, 7: 36670 -36683.

Zhou C. 2014. Antibacterial, anti-inflammatory and antiadhesive coatings for urinary catheters. Master thesis, Drexel University, USA, 48 p.

Zhou J.W., Luo H.Z., Jiang H., Jian T.K., Chen Z.Q. and Jia A.Q. 2018. Hordenine: A novel Quorum sensing inhibitor and antibiofilm agent against Pseudomonas aeruginosa. Journal of Agricultural and Food Chemistry, 66: 1620- 1628.

Zobell C.E. 1943. The effect of solid surfaces upon bacterial activity. Journal of Bacteriology, 46(1):39-56.

Refbacks

  • There are currently no refbacks.