Genotoxicity induced by imidacloprid in aquatic ecosystems: a case study on Oreochromis niloticus
Abstract
Imidacloprid is a widely used insecticide classified as a neonicotinoid, which acts on the central nervous system of insects. This study aimed to evaluate the genotoxic effects of imidacloprid on Oreochromis niloticus using the micronucleus (MN) assay. For this purpose, fish were exposed to 50 and 100 mg/L concentrations of imidacloprid for 24 and 96 hours. Sublethal doses were selected as 1/6 and 1/3 of the 96-hour LC50 value (280 mg/L). The frequencies of micronuclei and nuclear abnormalities (notched, budding, lobed, and binucleated nuclei) were found to increase significantly in a dose- and time-dependent manner compared to the control groups (p<0.05). The highest MN frequency was observed in the 100 mg/L group at 96 hours, reaching 10.8‰. Notched nuclei (11.5‰) and budding nuclei (9.5‰) also showed a significant increase. These findings indicate that imidacloprid can cause genotoxic effects even at low concentrations and may pose a threat to aquatic ecosystems. The results emphasize the need for more rigorous biomonitoring of pesticide pollution and suggest that regulatory measures should be taken to protect aquatic environments.
Keywords
References
Akbaş, D. (2014). Electrophysiological and histological effects of the neonicotinoid insecticide imidacloprid on the skeletal muscle of frogs (Rana ridibunda) [Master's thesis, Mersin University Institute of Science].
Al-Sabti, K., & Metcalfe, C. D. (1995). Fish micronuclei for assessing genotoxicity in water. Mutation Research, 343, 121–135. https://doi.org/10.1016/0165-1218(95)90078-0
Ansoar-Rodríguez, Y., Christofoletti, C. , Marcato, A. , Correia, J. , Bueno, O. , Malaspina, O., & Fontanetti, C. (2015). Genotoxic potential of the insecticide imidacloprid in a non-target organism (Oreochromis niloticus—Pisces). Journal of Environmental Protection, 6, 1360–1367. https://doi.org/10.4236/jep.2015.611119
Atamanalp, M., & Yanık, T. (2001). Effects of pesticides on Cyprinidae. Ege University Journal of Fisheries and Aquatic Sciences, 18(3–4), 555–563.
Bolognesi, C. (2003). Genotoxicity of pesticides: A review of human biomonitoring studies. *Mutation Research/Reviews in Mutation Research, 543*(3), 251–272. https://doi.org/10.1016/S1383-5742(03)00015-2
Bonmatin, J. M., Giorio, C., Girolami, V., et al. (2015). Environmental fate and exposure: Neonicotinoids and fipronil. Environmental Science and Pollution Research, 22(1), 35–67. https://doi.org/10.1007/s11356-014-3332-7
Çavaş, T., & Könen, S. (2008). Genotoxicity testing of the herbicide trifluralin and its commercial formulation Treflan using the piscine micronucleus test. Environmental and Molecular Mutagenesis, 49(6), 434–438. https://doi.org/10.1002/em.20397
Chará-Serna, A. M., Epele, L. B., Morrissey, C. A., & Richardson, J. S. (2019). Nutrients and sediment modify the impacts of a neonicotinoid insecticide on freshwater community structure and ecosystem functioning. Science of the Total Environment, 692, 1291–1303. https://doi.org/10.1016/j.scitotenv.2019.07.077
De Figueirêdo, L. P., Cirqueira, F., de Sousa, B. L. C., Mamboungou, J., & Rocha, T. L. (2025). Developmental toxicity of formulated insecticide mixture containing imidacloprid and beta-cyfluthrin in fish: Insights using zebrafish. Chemosphere, 377, 144314. https://doi.org/10.1016/j.chemosphere.2024.144314
Depledge, M. H. (1998). The ecotoxicological significance of genotoxicity in marine invertebrates. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 399*(1), 109–122. https://doi.org/10.1016/S0027-5107(97)00271-6
Dikel, S. (2009). The effect of water temperature on fish farming. Alınteri Journal, 16(B), 42–49.
Ergene, S., Portakal, E., & Karahan, A. (1999). Karyological analysis and body proportion of catfish (Clariidae, Clarias lazera, Valenciennes, 1840) in the Göksu Delta, Turkey. Turkish Journal of Zoology, 23, 423–426.
Fenech, M. (2000). The in vitro micronucleus technique. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 455*(1–2), 81–95. https://doi.org/10.1016/S0027-5107(00)00065-8
Fenech, M., & Crott, J. W. (2002). Micronuclei, nucleoplasmic bridges, and nuclear buds induced in folic acid–deficient human lymphocytes. Mutation Research, 504, 131–136. https://doi.org/10.1016/S0027-5107(02)00086-X
Figueiredo-Fernandes, A., Ferreira-Cardoso, J. V., Garcia-Santos, S., Monteiro, S. M., Carrola, J., Matos, P., & Fontaínhas-Fernandes, A. (2006). Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesquisa Veterinária Brasileira, 26(2), 103–109.
Gibbons, D., Morrissey, C., & Mineau, P. (2015). A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environmental Science and Pollution Research, 22(1), 103–118. https://doi.org/10.1007/s11356-014-3180-5
Goulson, D. (2013). An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50, 977–987. https://doi.org/10.1111/1365-2664.12111
Guo, J., Shi, R., Cao, Y., Luan, Y., Zhou, Y., Gao, Y., & Tian, Y. (2020). Genotoxic effects of imidacloprid in human lymphoblastoid TK6 cells. Drug and Chemical Toxicology, 43(2), 208–212. https://doi.org/10.1080/01480545.2018.1497046
Helfrich, L. A., Weigmann, D., Hipkins, P., Stinson, E. R. (2009). Pesticides and aquatic animals: A guide to reducing impacts on wildlife (Virginia Cooperative Extension Publication No. 420-013).
Karahan, A. (2015). Effects of imidacloprid and thiamethoxam on Anatolian honeybees [Master's thesis, Süleyman Demirel University Institute of Science].
Kreutzweiser, D. P., Thompson, ∫. G., & Scarr, T. A. (2008). Imidacloprid in leaves from systemically treated trees may inhibit litter breakdown by non-target invertebrates. Ecotoxicology, 17(6), 525–530. https://doi.org/10.1007/s10646-008-0210-4
Maier, P., & Schmid, W. (1976). Ten model mutagens evaluated by the micronucleus test. *Mutation Research/Genetic Toxicology, 40*(4), 325–337. https://doi.org/10.1016/0165-1218(76)90006-5
Main, A. R., Webb, E. B., Tillitt, D., & LaGrange, T. (2014). Neonicotinoid pesticides and their effects on wetland ecosystems. Environmental Science & Technology, 48(9), 4929–4935. https://doi.org/10.1021/es4056144
Merga, L. B., & Van den Brink, P. J. (2021). Ecological effects of imidacloprid on a tropical freshwater ecosystem and subsequent recovery dynamics. Science of the Total Environment, 789, 147956. https://doi.org/10.1016/j.scitotenv.2021.147956
Mondal, A., Saha, S., & Xiong, J. Q. (2024). Biomarkers to assess water pollution in lakes and rivers. In Biomarkers in environmental and human health biomonitoring (pp. 23–50). Academic Press.
Morrissey, C. A., Mineau, P., Devries, J. H., Sanchez-Bayo, F., Liess, M., Cavallaro, M. C., & Liber, K. (2015). Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environment International, 74, 291–303. https://doi.org/10.1016/j.envint.2014.10.024
Nugnes, R., Russo, C., Orlo, E., Lavorgna, M., & Isidori, M. (2023). Imidacloprid: Comparative toxicity, DNA damage, ROS production, and risk assessment for aquatic non-target organisms. Chemosphere, 312, 137234. https://doi.org/10.1016/j.chemosphere.2022.137234
Petković Didović, M., Kowalkowski, T., & Broznic, D. (2022). Emerging contaminant imidacloprid in Mediterranean soils: The risk of accumulation is greater than the risk of leaching. Toxics, 10(7), 358. https://doi.org/10.3390/toxics10070358
Pisa, L. W., Amaral-Rogers, V., Belzunces, L.P. et al. (2015). Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 22(1), 68–102. https://doi.org/10.1007/s11356-014-3471-x
Sánchez-Bayo, F., & Tennekes, H. A. (2020). Time-cumulative toxicity of neonicotinoids: Experimental evidence and implications for environmental risk assessments. International Journal of Environmental Research and Public Health, 17(5), 1629. https://doi.org/10.3390/ijerph17051629
Shimizu, N., Itoh, N., Utiyama, H., & Wahl, G. M. (2000). Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. Journal of Cell Biology, 151(6), 1205–1214. https://doi.org/10.1083/jcb.151.6.1205
Suzuki, H., Makino, W., Takahashi, S., & Urabe, J. (2024). Assessment of toxic effects of imidacloprid on freshwater zooplankton: An experimental test for 27 species. Science of the Total Environment, 927, 172378. https://doi.org/10.1016/j.scitotenv.2024.172378
Tiryaki, O. (2016). Pesticide residue analysis and studies in Turkey. Erciyes University Journal of Science and Technology, 32(1), 72–80.
Tišler, T., & Jemec, A. (2009). Acute and chronic toxicity of imidacloprid to aquatic organisms. Chemosphere, 76(7), 907–914. https://doi.org/10.1016/j.chemosphere.2009.05.002
Tisler, T., Jemec, A., Mozetič, B., & Trebše, P. (2009). Hazard identification of imidacloprid to aquatic environment. Chemosphere, 76, 907–914. https://doi.org/10.1016/j.chemosphere.2009.05.002
Tomizawa, M., & Casida, J. E. (2005). Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annual Review of Pharmacology and Toxicology, 45, 247–268. https://doi.org/10.1146/annurev.pharmtox.45.120403.095930
Van Dijk, T. C., Van Staalduinen, M. A., & Van der Sluijs, J. P. (2013). Macro-invertebrate decline in surface water polluted with imidacloprid. PLOS ONE, 8(5), e62374. https://doi.org/10.1371/journal.pone.0062374
Von Ledebur, M. M., & Schmid, W. (1973). The micronucleus test: Methodological aspects. Mutation Research, 19, 109–117. https://doi.org/10.1016/0027-5107(73)90030-8
Wood, T. J., & Goulson, D. (2017). The environmental risks of neonicotinoid pesticides: A review of the evidence post-2013. Environmental Science and Pollution Research, 24(21), 17285–17325. https://doi.org/10.1007/s11356-017-9240-x
Yamamuro, M., Komuro, T., Kamiya, H., Kato, T., Hasegawa, H., & Kameda, Y. (2019). Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science, 366(6465), 620–623. https://doi.org/10.1126/science.aax3442
Yıldırım, E. (2008). Methods and chemicals used in agricultural pest control (Atatürk University Faculty of Agriculture Publications No. 219).
Refbacks
- There are currently no refbacks.